Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Reparametrization invariant norms

Authors: P. Frosini and C. Landi
Journal: Trans. Amer. Math. Soc. 361 (2009), 407-452
MSC (2000): Primary 46E10, 46B20
Published electronically: July 24, 2008
MathSciNet review: 2439412
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper explores the concept of reparametrization invariant norm (RPI-norm) for $ C^1$-functions that vanish at $ -\infty$ and whose derivative has compact support, such as $ C^1_c$-functions. An RPI-norm is any norm invariant under composition with orientation-preserving diffeomorphisms. The $ L_\infty$-norm and the total variation norm are well-known instances of RPI-norms. We prove the existence of an infinite family of RPI-norms, called standard RPI-norms, for which we exhibit both an integral and a discrete characterization. Our main result states that for every piecewise monotone function $ \varphi$ in $ C^1_c(\mathbb{R})$ the standard RPI-norms of $ \varphi$ allow us to compute the value of any other RPI-norm of $ \varphi$. This is proved using the standard RPI-norms to reconstruct the function $ \varphi$ up to reparametrization, sign and an arbitrarily small error with respect to the total variation norm.

References [Enhancements On Off] (What's this?)

  • 1. L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Oxford, 2000. MR 1857292 (2003a:49002)
  • 2. F. L. Bauer, J. Stoer and C. Witzgall, Absolute and monotonic norms, Numerische Mathematik, 3 no. 1 (1961), 257-264. MR 0130104 (23:B3136)
  • 3. J. Bergh, J. Löfström, Interpolation Spaces, Grundlehren der mathematischen Wissenschaften 223, 1976.
  • 4. P. Donatini and P. Frosini, Natural pseudodistances between closed manifolds, Forum Mathematicum 16 (2004), 695-715. MR 2096683 (2005g:58019)
  • 5. P. Donatini and P. Frosini, Lower bounds for natural pseudodistances via size functions, Archives of Inequalities and Applications 2 (2004), 1-12. MR 2043046 (2004m:58015)
  • 6. P. Donatini and P. Frosini, Natural pseudodistances between closed surfaces, J. Eur. Math. Soc. (JEMS) 9 (2007), 231-253. MR 2293959
  • 7. A. Dumitrescu and G. Rote, On the Fréchet distance of a set of curves In: Proceedings of the 16th Canadian Conference on Computational Geometry (CCCG'04), Montreal, August 9-11, 2004, 162-165.
  • 8. T. Holmstedt, J. Peetre, On certain functionals arising in the theory of interpolation spaces, J. Functional Anal. 4 (1969), 88-94. MR 0241966 (39:3301)
  • 9. K. Jarosz, Uniqueness of translation invariant norms, J. Funct. Anal. 174 (2000), no. 2, 417-429. MR 1768981 (2001e:46092)
  • 10. P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS) 8 (2006), 1-48. MR 2201275 (2007a:58007)
  • 11. E. Moreno and A. R. Villena, Uniqueness of dilation invariant norms, Proc. Amer. Math. Soc. 132 (2004), no. 7, 2067-2073. MR 2053979 (2005b:46063)
  • 12. B. Sévennec, Normes invariantes par diffomorphismes sur $ C^k(X)$ (French) [Diffeomorphism-invariant norms on $ C^k(X)$], Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 2, 335-355. MR 1656173 (99j:58022)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46E10, 46B20

Retrieve articles in all journals with MSC (2000): 46E10, 46B20

Additional Information

P. Frosini
Affiliation: Arces, Università di Bologna, via Toffano 2/2, I-40135 Bologna, Italia – and – Dipartimento di Matematica, Università di Bologna, P.zza di Porta S. Donato 5, I-40126 Bologna, Italia

C. Landi
Affiliation: Dismi, Università di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, I-42100 Reggio Emilia, Italia

Keywords: Reparametrization invariant norm, standard reparametrization invariant norm
Received by editor(s): March 21, 2007
Published electronically: July 24, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society