Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Derivation of the Aronsson equation for $ C^1$ Hamiltonians


Authors: Michael G. Crandall, Changyou Wang and Yifeng Yu
Journal: Trans. Amer. Math. Soc. 361 (2009), 103-124
MSC (2000): Primary 35J70, 49K20
DOI: https://doi.org/10.1090/S0002-9947-08-04651-5
Published electronically: August 12, 2008
MathSciNet review: 2439400
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved herein that any absolute minimizer $ u$ for a suitable Hamiltonian $ H\in C^1(\mathbb{R}^n \times \mathbb{R}\times U)$ is a viscosity solution of the Aronsson equation:

$\displaystyle H_{p}(Du,u,x)\cdot (H (Du,u,x))_x=0$   in$\displaystyle \,\, U. $

The primary advance is to weaken the assumption that $ H\in C^2,$ used by previous authors, to the natural condition that $ H\in C^1.$


References [Enhancements On Off] (What's this?)

  • 1. G. ARONSSON, Minimization problem for the functional $ sup_xF(x,f(x), f'(x))$, Ark. Mat. 6 (1965), 33-53. MR 0196551 (33:4738)
  • 2. G. ARONSSON, Minimization problem for the functional $ sup_xF(x,f(x), f'(x))$. II, Ark. Mat. 6 (1966), 409-431. MR 0203541 (34:3391)
  • 3. G. ARONSSON, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. MR 0217665 (36:754)
  • 4. G. ARONSSON, Minimization problem for the functional $ sup_xF(x,f(x), f'(x))$. III, Ark. Mat. 7 (1969), 509-512. MR 0240690 (39:2035)
  • 5. G. ARONSSON, M. G. CRANDALL, P. JUUTINEN, A Tour of the Theory of Absolutely Minimizing Functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439-505 (electronic). MR 2083637 (2005k:35159)
  • 6. BARRON, E. N., JENSEN, R., Minimizing the $ L^\infty$ norm of the gradient with an energy constraint, Comm. Partial Differential Equations 30 (2005), no. 12, 1741-1772. MR 2182310 (2006h:35047)
  • 7. E. N. BARRON, R. R. JENSEN, C. Y. WANG, The Euler equation and absolute minimizers of $ L^{\infty}$ functionals, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 255-283. MR 1831173 (2002m:49006)
  • 8. CHAMPION, T., DE PASCALE, L., Principles of comparison with distance functions for absolute minimizers, J. Convex Anal. 14 (2007), no 3, 515-541. MR 2341302
  • 9. M. G. CRANDALL, An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal. 167 (2003), no. 4, 271-279. MR 1981858 (2004b:35053)
  • 10. M. G. CRANDALL, A Visit with the $ \infty$-Laplace Equation, in Calculus of Variations and Non-Linear Partial Differential Equations, (C.I.M.E. Summer School, Cetraro, 2005), Lecture Notes in Math., vol. 1927, Springer, Berlin, 2008.
  • 11. M. G. CRANDALL, L. C. EVANS, A remark on infinity harmonic functions, 123-129 (electronic), Electron. J. Differ. Equ. Conf., 6. MR 1804769 (2001j:35076)
  • 12. M. G. CRANDALL, L. C. EVANS, R. GARIEPY, Optimal Lipschitz Extensions and the Infinity Laplacian, Cal. Var. Partial Differential Equations 13 (2001), no.2, 123-139. MR 1861094 (2002h:49048)
  • 13. M. G. CRANDALL, G. GUNNARSSON, P. Y. WANG, Uniqueness of $ \infty$-harmonic functions and the eikonal equation, Comm. Partial Differential Equations 32 (2007), 1587-1615. MR 2372480
  • 14. M. G. CRANDALL, H. ISHII, P. L. LIONS, User's guide to viscosity solutions of second order partial differential equations, Bull. AMS 27 (1992), 1-67. MR 1118699 (92j:35050)
  • 15. A. FATHI, A. SICONOLFI, PDE aspects of Aubry-Mather theory for continuous Hamiltonians, Calc. Var. Partial Differential Equations 22 (2005), no. 2, 185-228.. MR 2106767 (2006f:35023)
  • 16. R. GARIEPY, C. WANG, Y. YU, Generalized Cone Comparison, Aronsson equation, and Absolute Minimizers, Comm. Partial Differential Equations, 36 (2006), no. 7-9, 1027-1046. MR 2254602 (2007h:35089)
  • 17. R. JENSEN, Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient, Archive for Rational Mechanics and Analysis 123 (1993), 51-74. MR 1218686 (94g:35063)
  • 18. R. JENSEN, C. WANG, Y. YU, Uniqueness for Viscosity Solutions of Aronsson Equations, Arch. Ration. Mech. Anal., to appear.
  • 19. P. JUUTINEN, Minimization problems for Lipschitz functions via viscosity solutions, Academiae Scientiarum Fennicae, Mathematica Dissertationes 115, 1998. MR 1632063 (2000a:49055)
  • 20. P. L. LIONS, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics 69, Pitman, Boston, MA, 1982. MR 667669 (84a:49038)
  • 21. Y. YU, $ L^{\infty}$ variational problems and the Aronsson equations, Archive for Rational Mechanics and Analysis (2006), 153-180. MR 2247955 (2007k:49066)
  • 22. Y. YU, $ L^{\infty}$ variational problems, Aronsson equations and weak KAM theory, Ph.D. dissertation, U.C. Berkeley, 2005.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J70, 49K20

Retrieve articles in all journals with MSC (2000): 35J70, 49K20


Additional Information

Michael G. Crandall
Affiliation: Department of Mathematics, University of California, Santa Barbara, Santa Barbara, California 93106
Email: crandall@math.ucsb.edu

Changyou Wang
Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
Email: cywang@ms.uky.edu

Yifeng Yu
Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
Email: yifengyu@math.utexas.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04651-5
Received by editor(s): October 20, 2006
Published electronically: August 12, 2008
Additional Notes: The first author was supported by NSF Grant DMS-0400674
The second author was supported by NSF Grant DMS-0601162
The third author was supported by NSF Grant DMS-0601403
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society