Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On measure-preserving $ \mathcal{C}^1$ transformations of compact-open subsets of non-archimedean local fields


Authors: James Kingsbery, Alex Levin, Anatoly Preygel and Cesar E. Silva
Journal: Trans. Amer. Math. Soc. 361 (2009), 61-85
MSC (2000): Primary 37A05; Secondary 37F10
DOI: https://doi.org/10.1090/S0002-9947-08-04686-2
Published electronically: August 12, 2008
MathSciNet review: 2439398
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of a locally scaling transformation defined on a compact-open subset of a non-archimedean local field. We show that this class encompasses the Haar measure-preserving transformations defined by $ \mathcal{C}^1$ (in particular, polynomial) maps, and prove a structure theorem for locally scaling transformations. We use the theory of polynomial approximation on compact-open subsets of non-archimedean local fields to demonstrate the existence of ergodic Markov, and mixing Markov transformations defined by such polynomial maps. We also give simple sufficient conditions on the Mahler expansion of a continuous map $ \mathbb{Z}_p \to \mathbb{Z}_p$ for it to define a Bernoulli transformation.


References [Enhancements On Off] (What's this?)

  • [Ami64] Yvette Amice, Interpolation $ p$-adique, Bull. Soc. Math. France 92 (1964), 117-180. MR 0188199 (32:5638)
  • [Ana02] V. S. Anashin, Uniformly distributed sequences of $ p$-adic integers, Diskret. Mat. 14 (2002), no. 4, 3-64. MR 1964120 (2004a:11077)
  • [AV94] David K. Arrowsmith and Franco Vivaldi, Geometry of $ p$-adic Siegel discs, Phys. D 71 (1994), no. 1-2, 222-236. MR 1264116 (95d:11162)
  • [Bar73] Daniel Barsky, Fonctions $ k$-lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. Math. France 101 (1973), 397-411. MR 0371863 (51:8080)
  • [Ben01] Robert L. Benedetto, Hyperbolic maps in $ p$-adic dynamics, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 1-11. MR 1826658 (2002c:11163)
  • [BS05] John Bryk and Cesar E. Silva, Measurable dynamics of simple $ p$-adic polynomials, Amer. Math. Monthly 112 (2005), no. 3, 212-232. MR 2125384 (2005m:37018)
  • [FRL04] Charles Favre and Juan Rivera-Letelier, Théorème d'équidistribution de Brolin en dynamique $ p$-adique, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, 271-276. MR 2092012 (2005f:37090)
  • [FRL06] -, Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), no. 2, 311-361. MR 2221116 (2007g:11074)
  • [HY83] M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 408-447. MR 730280 (85i:12012)
  • [KN04] Andrei Yu. Khrennikov and Marcus Nilson, $ p$-adic deterministic and random dynamics, Mathematics and its Applications, vol. 574, Kluwer Academic Publishers, Dordrecht, 2004. MR 2105195 (2005h:37102)
  • [Lin04] Karl-Olof Lindahl, On Siegel's linearization theorem for fields of prime characteristic, Nonlinearity 17 (2004), no. 3, 745-763. MR 2057125 (2005a:37078)
  • [LS94] Douglas Lind and Klaus Schmidt, Bernoullicity of solenoidal automorphisms and global fields, Israel J. Math. 87 (1994), no. 1-3, 33-35. MR 1286813 (95e:28013)
  • [RB] Robert Rumely and Matthew H. Baker, Analysis and dynamics on the berkovich projective line, http://arxiv.org/abs/math/0407433, 1-150.
  • [RL03] Juan Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Astérisque (2003), no. 287, xv, 147-230, Geometric methods in dynamics. II. MR 2040006 (2005f:37100)
  • [Rob00] Alain M. Robert, A course in $ p$-adic analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag, New York, 2000. MR 1760253 (2001g:11182)
  • [Sch84] W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984, An introduction to $ p$-adic analysis. MR 791759 (86j:11104)
  • [Ser62] Jean-Pierre Serre, Corps locaux, Publications de l'Institut de Mathématique de l'Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962. MR 0150130 (27:133)
  • [Sil08] C.E. Silva, Invitation to ergodic theory, Student Mathematical Library, vol. 42, American Mathematical Society, Providence, RI, 2008. MR 2371216
  • [Wal82] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)
  • [War06] Thomas Ward, Review of ``p-adic deterministic and random dynamical systems'' by Andrei Khrennikov and Marcus Nilsson, Mathematics and its Applications Vol. 574, Kluwer Academic Publishers (2004), Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 1, 133-137.
  • [WS98] Christopher F. Woodcock and Nigel P. Smart, $ p$-adic chaos and random number generation, Experiment. Math. 7 (1998), no. 4, 333-342. MR 1678087 (99k:11123)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37A05, 37F10

Retrieve articles in all journals with MSC (2000): 37A05, 37F10


Additional Information

James Kingsbery
Affiliation: Department of Mathematics, Williams College, Williamstown, Massachusetts 01267
Email: 06jck@williams.edu

Alex Levin
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication: Department of Mathematics, MIT, Cambridge, Massachusetts 02139
Email: alex.levin@post.harvard.edu, levin@mit.edu

Anatoly Preygel
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication: Department of Mathematics, MIT, Cambridge, Massachusetts 02139
Email: preygel@post.harvard.edu, preygel@mit.edu

Cesar E. Silva
Affiliation: Department of Mathematics, Williams College, Williamstown, Massachusetts 01267
Email: csilva@williams.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04686-2
Keywords: Measure-preserving, ergodic, non-archimedean local field
Received by editor(s): September 1, 2006
Published electronically: August 12, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society