Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ H^{p}$-bounds for spectral multipliers on graphs


Authors: Ioanna Kyrezi and Michel Marias
Journal: Trans. Amer. Math. Soc. 361 (2009), 1053-1067
MSC (2000): Primary 42B15, 42B20, 42B30
DOI: https://doi.org/10.1090/S0002-9947-08-04596-0
Published electronically: September 29, 2008
MathSciNet review: 2452834
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the boundedness on the Hardy spaces $ H^{p}$ of spectral multiplier operators associated with the discrete Laplacian on a weighted graph. We assume that the graph satisfies the doubling volume property and a Poincaré inequality. We prove that there is $ p_{0}\in\left( 0,1\right) $, depending on the geometry of the graph, such that if the multiplier satisfies a condition similar to the one we have in the classical Hörmander multiplier theorem, then the corresponding operator is bounded on $ H^{p}$, $ p\in\left( p_{0},1\right] $.


References [Enhancements On Off] (What's this?)

  • 1. G. Alexopoulos, Spectral multipliers on discrete groups, Bull. London Math. Soc., 33, (2001), 417-424. MR 1832553 (2002d:22010)
  • 2. G. Alexopoulos, $ L^{p}$ bounds for spectral multipliers from Gaussian estimates of the transition kernels, J. Math. Soc. Japan, 56, (2004), 833-852. MR 2071675 (2005i:43021)
  • 3. J.-Ph. Anker, $ L^{p}$ Fourier multipliers on Riemannian symmetric spaces of noncompact type, Ann. of Math., 132, (1990), 597-628. MR 1078270 (92e:43006)
  • 4. A.P. Calderón, A. Torchinsky, Parabolic maximal functions associated with a distribution II, Adv. Math., 24, (1977), 101-171. MR 0450888 (56:9180)
  • 5. T.K. Carne, A transmutation formula for Markov chains, Bull. Sci. Math., 106, (1985), 399-405. MR 837740 (87m:60142)
  • 6. M. Christ, $ L^{p}$ bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328, (1991), 73-81. MR 1104196 (92k:42017)
  • 7. R.R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, (1977), 569-645. MR 0447954 (56:6264)
  • 8. T. Coulhon, Random walks and geometry on infinite graphs, Lectures notes on analysis on metric spaces, Trento, C.I.R.M., 1999, Luigi Ambrosio, Francesco Serra Cassano, ed., Scuola Normale Superiore di Pisa, (2000), 5-23. MR 2023121 (2005f:60102)
  • 9. T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana, 15, (1999), 181-232. MR 1681641 (2000b:35103)
  • 10. L. De-Michele, G. Mauceri, $ H^{p}$ multipliers on stratified groups, Ann. Mat. Pura. Appl., 148, (1987), 353-366. MR 932770 (89e:43009)
  • 11. W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Coll. Math., 65, (1993), 231-239. MR 1240169 (94m:43013)
  • 12. W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., 21, (1993), 673-709. MR 1217561 (94m:60144)
  • 13. L. Hörmander, Estimates for translation invariant operators in $ L^{p}$ spaces, Acta Math., 104, (1960), 93-139. MR 0121655 (22:12389)
  • 14. J. Kyrezi, M. Marias, $ H^{1}$-bounds for spectral multipliers on graphs, Proc. Amer. Math. Soc., 132, (2004), 1311-1320. MR 2053335 (2005h:42026)
  • 15. C.-C. Lin, Hörmander's $ H^{p}$ multiplier theorem for the Heisenberg group, J. London Math. Soc., 67, (2003), 686-700. MR 1967700 (2003k:42029)
  • 16. G.G. Lorentz, Approximation of functions, Holt, Rinehart and Wilson, New York, 1966. MR 0213785 (35:4642)
  • 17. M. Marias, $ L^{p}$-boundedness of oscillating spectral multipliers on Riemannian manifolds, Ann. Math. Blaise Pascal, 10, (2003), 133-160. MR 1990014 (2005f:58020)
  • 18. S.G. Mikhlin, Multidimensional singular integral and integral equations, Pergamon Press, Oxford, 1965. MR 0185399 (32:2866)
  • 19. D. Müller, E.M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl., 73, (1994), 413-440. MR 1290494 (96m:43004)
  • 20. I.P. Natanson, Constructive function theory, vol. 1, Uniform approximation, Frederick Ungar, New York, 1964. MR 0196340 (33:4529a)
  • 21. K. Yoshida, Functional analysis, Springer-Verlag, Berlin, 1978. MR 0500055 (58:17765)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42B15, 42B20, 42B30

Retrieve articles in all journals with MSC (2000): 42B15, 42B20, 42B30


Additional Information

Ioanna Kyrezi
Affiliation: Department of Applied Mathematics, University of Crete, Iraklion 714.09, Crete, Greece
Email: kyrezi@tem.uoc.gr

Michel Marias
Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54.124, Greece
Email: marias@math.auth.gr

DOI: https://doi.org/10.1090/S0002-9947-08-04596-0
Keywords: Graph, multiplier, Hardy space, discrete Laplacian
Received by editor(s): November 14, 2005
Received by editor(s) in revised form: May 15, 2007
Published electronically: September 29, 2008
Additional Notes: The first author was partially supported by a NATO (Greece) fellowship and the second author by the EPEAK program Pythagoras II (Greece) and the European TMR Network “Harmonic Analysis”.
Dedicated: Dedicated to the memory of Nikos Danikas
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society