Dynamics of strongly damped wave equations in locally uniform spaces: Attractors and asymptotic regularity

Authors:
Meihua Yang and Chunyou Sun

Journal:
Trans. Amer. Math. Soc. **361** (2009), 1069-1101

MSC (2000):
Primary 37L05, 35B40, 35B41

DOI:
https://doi.org/10.1090/S0002-9947-08-04680-1

Published electronically:
September 29, 2008

MathSciNet review:
2452835

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is dedicated to analyzing the dynamical behavior of strongly damped wave equations with critical nonlinearity in locally uniform spaces. After proving the global well-posedness, we first establish the asymptotic regularity of the solutions which appears to be optimal and the existence of a bounded (in ) subset which attracts exponentially every initial -bounded set with respect to the -norm. Then, we show there is a -global attractor, which reflects the *strongly damped property* of to some extent.

**1.**J. Arrieta, A.N. Carvalho and J.K. Hale,*A damped hyperbolic equation with critical exponent*, Comm. Partial Differential Equations,**17**(1992), 841-866. MR**1177295 (93f:35145)****2.**J. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodriguez-Bernal,*Linear parabolic equations in locally uniform spaces*, Math. Models Methods Appl. Sci.,**14**(2004), 253-293. MR**2040897 (2004m:35114)****3.**A.V. Babin and M.I. Vishik,*Attractors of Evolution Equations*, North-Holland, Amsterdam, 1992. MR**1156492 (93d:58090)****4.**A.V. Babin and M.I. Vishik,*Attractors of partial differential evolution equations in an unbounded domain*, Proc. Roy. Soc. Edinburgh Sect. A,**116**(1990), 221-243. MR**1084733 (91m:35106)****5.**V. Belleri and V. Pata,*Attractors for semilinear strongly damped wave equations on*, Discrete Contin. Dyn. Syst.,**7**(2001), 719-735. MR**1849655 (2003f:35026)****6.**A.N. Carvalho and J.W. Cholewa,*Attractors for strongly damped wave equations with critical nonlinearities*, Pacific J. Math.,**207**(2002), 287-310. MR**1972247 (2004b:35023)****7.**A.N. Carvalho and J.W. Cholewa,*Local well posedness for strongly damped wave equations with critical nonlinearities*, Bull. Austral. Math. Soc.,**66**(2002), 443-463. MR**1939206 (2004b:35228)****8.**A.N. Carvalho and T. Dlotko,*Partly dissipative systems in uniformly local spaces*, Colloq. Math.,**100**(2004), 221-242. MR**2107518 (2005i:35113)****9.**J.W. Cholewa and T. Dlotko,*Global Attractors in Abstract Parabolic Problems*, Cambridge University Press, 2000. MR**1778284 (2002f:37132)****10.**J.W. Cholewa and T. Dlotko,*Hyperbolic equations in uniform spaces*, Bulletin of The Polish Academy of Sciences Mathematics,**52**(2004), 249-263. MR**2127062 (2006b:35225)****11.**J.W. Cholewa and T. Dlotko,*Cauchy problems in weighted Lebesgue spaces*, Czechoslovak Mathematical Journal,**54**(2004), 991-1013. MR**2099352 (2005g:35148)****12.**J.W. Cholewa and T. Dlotko,*Strongly damped wave equation in uniform spaces*, Nonlinear Anal. TMA,**64**(2006), 174-187. MR**2183836 (2006f:35183)****13.**M. Conti, V. Pata and M. Squassina,*Strongly damped wave equations on with critical nonlinearities*, Communications in Applied Analysis,**9**(2005), 161-176. MR**2168756 (2006d:35165)****14.**M.A. Efendiev, A. Miranville and S.V. Zelik,*Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation*, Proc. R. Soc. Lond. A,**460**(2004), 1107-1129. MR**2133858 (2005m:37190)****15.**M.A. Efendiev and S.V. Zelik,*The attractor for a nonlinear reaction-diffusion system in an unbounded domain*, Comm. Pure Appl. Math.,**54**(2001), 625-688. MR**1815444 (2001m:35035)****16.**E. Feireisl,*Bounded, locally compact global attractors for semilinear damped wave equations in*, Differential Integral Equations,**9**(1996), 1147-1156. MR**1392099 (97f:35138)****17.**P. Fabrie, C. Galushinski, A. Miranville and S. Zelik,*Uniform exponential attractors for a singular perturbed damped wave equation*, Discrete Contin. Dyn. Syst.,**10**(2004), 211-238. MR**2026192 (2006c:37088)****18.**E. Feireisl, Ph. Laurencot, F. Simondon and H. Toure,*Compact attractors for reaction diffusion equations in*, C. R. Acad. Sci. Paris. Sér. I. Math.,**319**(1994), 147-151. MR**1288394 (95f:35110)****19.**E. Feireisl, Ph. Laurencot and F. Simondon,*Global attractors for degenerate parabolic equations on unbounded domains*, J. Diff. Equations,**129**(1996), 239-261. MR**1404383 (97j:35082)****20.**C. Gatti, A. Miranville, V. Pata and S.V. Zelik,*Attractors for semilinear equations of viscoelasticity with very low dissipation*, R. Mountain J. Math.,**38**(2008), 1117-1138.**21.**J.K. Hale,*Asymptotic Behavior of Dissipative Systems*, AMS, Providence, RI, 1988. MR**941371 (89g:58059)****22.**N. Karachalios and N. Stavrakakis,*Existence of a global attractor for semilinear dissipative wave equations on*, J. Diff. Equations,**157**(1999), 183-205. MR**1710020 (2000e:35151)****23.**T. Kato,*The Cauchy problem for quasi-linear symmetric hyperbolic systems*, Arch. Rat. Mech. Anal.,**58**(1975), 181-205. MR**0390516 (52:11341)****24.**O.A. Ladyzhenskaya,*Attractors for semigroups and evolution equations*, Leizioni Lincei, Cambridge Univ. Press, Cambridge, New York, 1991. MR**1133627 (92k:58040)****25.**A. Mielke,*The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors*, Nonlinearity,**10**(1997), 199-222. MR**1430749 (97m:35242)****26.**A. Mielke and G. Schneider,*Attractors for modulation equations on unbounded domains-existence and comparison*, Nonlinearity,**8**(1995) 743-768. MR**1355041 (97e:58207)****27.**V. Pata and M. Squassina,*On the strongly damped wave equation*, Comm. Math. Phys.,**253**(2005), 511-533. MR**2116726 (2005k:35291)****28.**V. Pata and S.V. Zelik,*Smooth attractors for strongly damped wave equations*, Nonlinearity,**19**(2006), 1495-1506. MR**2229785 (2007f:35257)****29.**C. Sun, D. Cao and J. Duan,*Non-autonomous wave dynamics with memory -- Asymptotic regularity and uniform attractor*, Discrete Contin. Dyn. Syst., Ser. B,**9**(2008), 743-761. MR**2379435****30.**C. Sun and M. Yang,*Attractors of strongly damped wave equations: asymptotic regularity and exponential attraction*, submitted.**31.**C. Sun, M. Yang and C. Zhong,*Global attractors for hyperbolic equations with critical exponent in locally uniform spaces*, submitted.**32.**R. Temam,*Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Springer, New York, 1997. MR**1441312 (98b:58056)****33.**M. Yang and C. Sun,*Dynamics of strongly damped wave equations in locally uniform spaces II: Infinite-dimensional exponential attractors and their approximation*, preparation.**34.**S.V. Zelik,*The attractor for a nonlinear hyperbolic equation in the unbounded domain*, Discrete Contin. Dyn. Syst.,**7**(2001), 593-641. MR**1815770 (2001m:35230)****35.**S.V. Zelik,*Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent*, Comm. Pure Appl. Anal.,**3**(2004), 921-934. MR**2106304 (2005h:35249)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37L05,
35B40,
35B41

Retrieve articles in all journals with MSC (2000): 37L05, 35B40, 35B41

Additional Information

**Meihua Yang**

Affiliation:
Department of Mathematics, Nanjing University, Nanjing, 210093, People’s Republic of China – and – Department of Mathematics, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China

Email:
yangmeih@gmail.com

**Chunyou Sun**

Affiliation:
Department of Mathematics, Lanzhou University, Lanzhou, 730000, People’s Republic of China – and – Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China

Email:
cysun@amss.ac.cn, sunchunyou@gmail.com

DOI:
https://doi.org/10.1090/S0002-9947-08-04680-1

Keywords:
Strongly damped wave equation,
locally uniform spaces,
critical exponent,
asymptotic regularity,
attractors.

Received by editor(s):
May 18, 2007

Published electronically:
September 29, 2008

Additional Notes:
This work was supported by the NSFC Grants 10601021 and 10726024 and the China Postdoctoral Science Foundation.

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.