Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction


Authors: E. N. Dancer and Juncheng Wei
Journal: Trans. Amer. Math. Soc. 361 (2009), 1189-1208
MSC (2000): Primary 35B40, 35B45; Secondary 35J40
DOI: https://doi.org/10.1090/S0002-9947-08-04735-1
Published electronically: October 7, 2008
MathSciNet review: 2457395
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the following elliptic system:

$\displaystyle \left\{\begin{array}{l} \varepsilon^2 \Delta u-\lambda_1 u+\mu_1... ... \mbox{in} \ \Omega, \ u=v=0 \ \mbox{on} \ \partial\Omega, \end{array}\right. $

where $ \Omega\subset \mathbb{R}^N (N\leq 3)$ is a smooth and bounded domain, $ \varepsilon>0$ is a small parameter, $ \lambda_1, \lambda_2, \mu_1, \mu_2 >0$ are positive constants and $ \beta \ne 0 $ is a coupling constant. We show that there exists an interval $ I=[a_0, b_0]$ and a sequence of numbers $ 0<\beta_1 <\beta_2 <...<\beta_n <...$ such that for any $ \beta \in (0, +\infty) \backslash (I \cup \{ \beta_1,..., \beta_n, ...\})$, the above problem has a solution such that both $ u$ and $ v$ develop a spike layer at the innermost part of the domain. Central to our analysis is the nondegeneracy of radial solutions in $ \mathbb{R}^N$.


References [Enhancements On Off] (What's this?)

  • 1. A. Ambrosetti and E. Colorado,
    Bound and ground states of coupled nonlinear Schrodinger equations,
    C. R. Math. Acad. Sci. Paris 342 (2006), 453-458. MR 2214594 (2006j:35057)
  • 2. N. Akhmediev and A. Ankiewicz,
    Partially coherent solitons on a finite background,
    Phys. Rev. Lett. 82 (1998), 2661, 1-4.
  • 3. T. Bartsch, Z.-Q. Wang and J. Wei,
    Bound states for a coupled Schrödinger system,
    JFEPT, to appear.
  • 4. P. Bates, E.N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999), 1-69. MR 1667283 (99k:35097)
  • 5. P. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal. 196 (2002), 211-264. MR 1943093 (2003k:35045)
  • 6. S. Chang, C.S. Lin, T.C. Lin and W. Lin.
    Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates.
    Phys. D 196(3-4) (2004), 341-361. MR 2090357 (2005g:82074)
  • 7. D.N. Christodoulides, T.H. Coskun, M. Mitchell and M. Segev,
    Theory of incoherent self-focusing in biased photorefractive media,
    Phys. Rev. Lett. 78(1-4) (1997), 646.
  • 8. M. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321-340. MR 0288640 (44:5836)
  • 9. M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161-180. MR 0341212 (49:5962)
  • 10. E.N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals, Proc. London Math. Soc. 30 (1975), 76-94. MR 0379963 (52:867)
  • 11. E.N. Dancer, Real analyticity and non-degeneracy, Math. Ann. 325 (2003), no. 2, 369-392. MR 1962054 (2004h:35067)
  • 12. E.N. Dancer, Global structure of the solutions of nonlinear real analytic eigenvalue problems, Proc. London Math. Soc. 27 (1973), 747-765. MR 0375019 (51:11215)
  • 13. E.N. Dancer and S. Yan, Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999), 241-262. MR 1696122 (2000d:35010)
  • 14. E.N. Dancer and S. Yan, Interior and boundary peak solutions for a mixed boundary value problem, Indiana Univ. Math. J. 48 (1999), 1177-1212. MR 1757072 (2001f:35146)
  • 15. M. del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Cal. Var. PDE 16 (2003), no.2, 113-145. MR 1956850 (2004a:35079)
  • 16. C. Gui and J. Wei, Multiple interior spike solutions for some singular perturbed Neumann problems, J. Diff. Eqns. 158 (1999), 1-27. MR 1721719 (2000g:35035)
  • 17. C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000), 522-538. MR 1758231 (2001b:35023)
  • 18. C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 249-289. MR 1743431 (2001a:35018)
  • 19. B.D. Esry, C.H. Greene, J.P. Burke, Jr., J.L. Bohn,
    Hartree-Fock theory for double condensates,
    Phys. Rev. Lett. 78 (1997), 3594-3597.
  • 20. B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 35 (1981), 525-598. MR 615628 (83f:35045)
  • 21. F.T. Hioe,
    Solitary Waves for $ N$ Coupled Nonlinear Schrödinger Equations,
    Phys. Rev. Lett. 82 (1999), 1152-1155.
  • 22. F.T. Hioe, T.S. Salter,
    Special set and solutions of coupled nonlinear Schrödinger equations,
    J. Phys. A: Math. Gen. 35 (2002), 8913-8928. MR 1946865 (2003k:35230)
  • 23. T. Kanna and M. Lakshmanan,
    Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,
    Phys. Rev. Lett. 86 (1-4) (2001), 5043.
  • 24. F.H. Lin, W.M. Ni and J. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math. 60 (2007), no. 2, 252-281. MR 2275329
  • 25. T.-C. Lin and J.-C. Wei,
    Ground state of $ N$ coupled Nonlinear Schrödinger Equations in $ R^n$, $ n\leq 3$,
    Communications in Mathematical Physics 255(3) (2005), 629-653. MR 2135447 (2006g:35044)
  • 26. T.-C. Lin and J. Wei,
    Spikes in two coupled nonlinear Schrödinger equations,
    Ann. I. H. Poincaré Analyse. Non. 22(4) (2005), 403-439. MR 2145720 (2006a:35065)
  • 27. T.-C. Lin and J. Wei,
    Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations,
    Physica D: Nonlinear Phenomena. 220 (2006), no. 2, 99-115. MR 2253405 (2007d:35241)
  • 28. L.A. Maia, E. Montefusco and B. Pellacci,
    Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Diff. Eqns. 229 (2006), no. 2, 743-767. MR 2263573 (2007h:35070)
  • 29. M. Mitchell, Z. Chen, M. Shih, and M. Segev,
    Self-trapping of partially spatially incoherent light,
    Phys. Rev. Lett. 77 (1996), 490-493.
  • 30. M. Mitchell and M. Segev,
    Self-trapping of incoherent white light,
    Nature 387 (1997), 880-882.
  • 31. W.M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281. MR 1219814 (94h:35072)
  • 32. W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768. MR 1342381 (96g:35077)
  • 33. B. Sirakov, Least energy solitary waves for a system of nonlinear Schrodinger equations, Comm. Math. Phys. 271 (2007), 199-221. MR 2283958 (2007k:35477)
  • 34. E. Timmermans,
    Phase separation of Bose-Einstein condensates,
    Phys. Rev. Lett. 81 (1998), 5718-5721.
  • 35. W. C. Troy,
    Symmetry properties in systems of semilinear elliptic equations,
    J. Diff. Eqn. 42(3) (1981), 400-413. MR 639230 (83b:35051)
  • 36. J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996), 315-333. MR 1404386 (97f:35015)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35B40, 35B45, 35J40

Retrieve articles in all journals with MSC (2000): 35B40, 35B45, 35J40


Additional Information

E. N. Dancer
Affiliation: School of Mathematics and Statistics, University of Sydney, Sydney, Australia
Email: normd@maths.usyd.edu.au

Juncheng Wei
Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
Email: wei@math.cuhk.edu.hk

DOI: https://doi.org/10.1090/S0002-9947-08-04735-1
Keywords: Spike layers, Bose-Einstein condensates, coupled nonlinear Schr\"odinger equations
Received by editor(s): August 1, 2006
Published electronically: October 7, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society