Algebraic shifting and graded Betti numbers
Authors:
Satoshi Murai and Takayuki Hibi
Journal:
Trans. Amer. Math. Soc. 361 (2009), 18531865
MSC (2000):
Primary 13D02; Secondary 13F55
Published electronically:
October 20, 2008
MathSciNet review:
2465820
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote the polynomial ring in variables over a field with each . Let be a simplicial complex on and its StanleyReisner ideal. We write for the exterior algebraic shifted complex of and for a combinatorial shifted complex of . Let denote the graded Betti numbers of . In the present paper it will be proved that (i) for all and , where the base field is infinite, and (ii) for all and , where the base field is arbitrary. Thus in particular one has for all and , where is the unique lexsegment simplicial complex with the same vector as and where the base field is arbitrary.
 1.
Annetta
Aramova, Jürgen
Herzog, and Takayuki
Hibi, Squarefree lexsegment ideals, Math. Z.
228 (1998), no. 2, 353–378. MR 1630500
(99h:13013), http://dx.doi.org/10.1007/PL00004621
 2.
Annetta
Aramova, Jürgen
Herzog, and Takayuki
Hibi, Gotzmann theorems for exterior algebras and
combinatorics, J. Algebra 191 (1997), no. 1,
174–211. MR 1444495
(98c:13025), http://dx.doi.org/10.1006/jabr.1996.6903
 3.
Annetta
Aramova, Jürgen
Herzog, and Takayuki
Hibi, Shifting operations and graded Betti numbers, J.
Algebraic Combin. 12 (2000), no. 3, 207–222. MR 1803232
(2001k:13022), http://dx.doi.org/10.1023/A:1011238406374
 4.
Winfried
Bruns and Jürgen
Herzog, CohenMacaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
(95h:13020)
 5.
P.
Erdős, Chao
Ko, and R.
Rado, Intersection theorems for systems of finite sets, Quart.
J. Math. Oxford Ser. (2) 12 (1961), 313–320. MR 0140419
(25 #3839)
 6.
Mark
L. Green, Generic initial ideals, Six lectures on commutative
algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser,
Basel, 1998, pp. 119–186. MR 1648665
(99m:13040)
 7.
Jürgen
Herzog, Generic initial ideals and graded Betti numbers,
Computational commutative algebra and combinatorics (Osaka, 1999) Adv.
Stud. Pure Math., vol. 33, Math. Soc. Japan, Tokyo, 2002,
pp. 75–120. MR 1890097
(2003b:13021)
 8.
Gil
Kalai, Algebraic shifting, Computational commutative algebra
and combinatorics (Osaka, 1999) Adv. Stud. Pure Math., vol. 33,
Math. Soc. Japan, Tokyo, 2002, pp. 121–163. MR 1890098
(2003e:52024)
 1.
 A. Aramova, J. Herzog and T. Hibi, Squarefree lexsegment ideals, Math. Z. 228 (1998), 353  378. MR 1630500 (99h:13013)
 2.
 A. Aramova, J. Herzog and T. Hibi, Gotzmann theorems for exterior algebras and combinatorics, J. of Algebra 191 (1997), 174  211. MR 1444495 (98c:13025)
 3.
 A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Algebraic Combin. 12 (2000), 202  222. MR 1803232 (2001k:13022)
 4.
 W. Bruns and J. Herzog, ``CohenMacaulay rings,'' Revised Edition, Cambridge University Press, 1996. MR 1251956 (95h:13020)
 5.
 P. Erdös, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1960), 313  320. MR 0140419 (25:3839)
 6.
 M. Green, Generic initial ideals, in ``Six Lectures on Commutative Algebra'' (J. Elias, J. M. Giral, R. M. MiróRoig and S. Zarzuela, Eds.) Birkhäuser, 1998, pp. 119  186. MR 1648665 (99m:13040)
 7.
 J. Herzog, Generic initial ideals and graded Betti numbers, in ``Computational Commutative Algebra and Combinatorics'' (T. Hibi, Ed.), Advanced Studies in Pure Math., Volume 33, 2002, pp. 75  120. MR 1890097 (2003b:13021)
 8.
 G. Kalai, Algebraic shifting, in ``Computational Commutative Algebra and Combinatorics'' (T. Hibi, Ed.), Advanced Studies in Pure Math., Volume 33, 2002, pp. 121  163. MR 1890098 (2003e:52024)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
13D02,
13F55
Retrieve articles in all journals
with MSC (2000):
13D02,
13F55
Additional Information
Satoshi Murai
Affiliation:
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 5600043, Japan
Email:
smurai@ist.osakau.ac.jp
Takayuki Hibi
Affiliation:
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 5600043, Japan
Email:
hibi@math.sci.osakau.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002994708047077
PII:
S 00029947(08)047077
Received by editor(s):
March 2, 2007
Published electronically:
October 20, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
