Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On zeros of some entire functions


Authors: Rostyslav O. Hryniv and Yaroslav V. Mykytyuk
Journal: Trans. Amer. Math. Soc. 361 (2009), 2207-2223
MSC (2000): Primary 30D15; Secondary 42A38
DOI: https://doi.org/10.1090/S0002-9947-08-04714-4
Published electronically: November 17, 2008
MathSciNet review: 2465834
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the distribution of zeros $ z_k$ for entire functions of the form $ \sin z + \int_{0}^1 f(t)\mathrm{e}^{iz(1-2t)}\,dt$ with $ f$ belonging to a space $ X \hookrightarrow L_1(0,1)$. For a large class $ \mathscr{X}$ of spaces $ X$ (including, e.g., the spaces $ L_p(0,1)$ for all $ p\in[1,\infty]$) we show that $ z_k=\pi k + \zeta_k$, where $ (\zeta_k)_{k\in\mathbb{Z}}$ is the sequence of Fourier coefficients for some function $ g$ in $ X$, and study properties of the induced mapping $ g\mapsto f$.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover, 1972. MR 0208797 (34:8606)
  • 2. R. A. Adams and J. F. Fournier, Sobolev Spaces, $ 2^{\mathrm{nd}}$ ed., Pure and Applied Mathematics, 140, Academic Press, New York, 2003. MR 0450957 (56:9247)
  • 3. S. Albeverio, R. Hryniv, and Ya. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators in impedance form, J. Funct. Anal. 222 (2005), no. 1, 143-177. MR 2129769 (2005j:34011)
  • 4. -, Inverse spectral problems for Dirac operators with summable potentials, Russian J. Math. Phys. 12 (2005), no. 4, 406-423. MR 2201307 (2006i:34021)
  • 5. S. A. Avdonin and S. A. Ivanov, Families of Exponentials: the Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge Univ. Press, Cambridge, 1995. MR 1366650 (97b:93002)
  • 6. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, Vol. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275 (58:2349)
  • 7. R. E. Edwards, Fourier Series. A Modern Introduction, $ 2^{\mathrm{nd}}$ ed., Vol. 1, Graduate Texts in Mathematics, 64, Springer-Verlag, New York-Berlin, 1979; Vol. 2, Graduate Texts in Mathematics, 85, Springer-Verlag, New York-Berlin, 1982. MR 0545506 (80j:42001); MR 0667519 (83k:42001)
  • 8. S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland, Amsterdam, 1981. MR 640093 (84b:46050)
  • 9. R. O. Hryniv and Ya. V. Mykytyuk, Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials, J. Funct. Anal. 238 (2006), 27-57. MR 2234122 (2007h:34155)
  • 10. M. Kreĭn and B. Levin, On entire almost periodic functions of exponential type, Doklady Akad. Nauk SSSR (N.S.) 64 (1949), 285-287 (in Russian). MR 0028455 (10:449g)
  • 11. B. Ya. Levin, Distribution of zeros of entire functions, Gos. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (in Russian); Engl. transl.: Translations of Mathematical Monographs, 5, American Mathematical Society, Providence, R.I., 1980. MR 589888 (81k:30011)
  • 12. -, Lectures on entire functions, Translations of Mathematical Monographs, 150, American Mathematical Society, Providence, RI, 1996. MR 1400006 (97j:30001)
  • 13. B. Ya. Levin and Ĭ. V. Ostrovskiĭ, Small perturbations of the set of roots of sine-type functions, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 87-110 (in Russian); Engl. transl.: Math. USSR-Izv. 14 (1979), no. 1, 79-101 (1980). MR 525943 (82b:30022)
  • 14. N. Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, vol. 26, American Mathematical Society, New York, 1940. MR 0003208 (2:180d)
  • 15. B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka Publ., Moscow, 1984 (in Russian); Engl. transl.: VNU Science Press, Utrecht, 1987. MR 771843 (86d:34002)
  • 16. V. A. Marchenko, Sturm-Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977 (in Russian); Engl. transl.: Birkhäuser Verlag, Basel, 1986. MR 0481179 (58:1317)
  • 17. J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando, Florida, 1987 (Pure and Applied Math., Vol. 130). MR 894477 (89b:34061)
  • 18. W. Rudin, Functional Analysis, McGraw-Hill Book Co, New York-Düsseldorf-Johannesburg, 1973. MR 0365062 (51:1315)
  • 19. A. M. Sedletskiĭ, Entire functions of the S. N. Bernstein class that are not Fourier-Stieltjes transforms, Mat. Zametki 61 (1997), no. 3, 367-380 (in Russian); Engl. transl.: Math. Notes 61 (1997), no. 3-4, 301-312. MR 1619755 (99c:30057)
  • 20. V. V. Zhikov, On inverse Sturm-Liouville problems on a finite segment, Izv. Akad. Nauk SSSR, 35(1967), no. 5, 965-976 (in Russian).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30D15, 42A38

Retrieve articles in all journals with MSC (2000): 30D15, 42A38


Additional Information

Rostyslav O. Hryniv
Affiliation: Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova st., 79601 Lviv, Ukraine – and – Lviv National University, 1 Universytetska st., 79602 Lviv, Ukraine
Email: rhryniv@iapmm.lviv.ua

Yaroslav V. Mykytyuk
Affiliation: Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova st., 79601 Lviv, Ukraine – and – Lviv National University, 1 Universytetska st., 79602 Lviv, Ukraine
Email: yamykytyuk@yahoo.com

DOI: https://doi.org/10.1090/S0002-9947-08-04714-4
Keywords: Entire functions, asymptotics of zeros, Fourier transform
Received by editor(s): September 26, 2006
Received by editor(s) in revised form: June 15, 2007
Published electronically: November 17, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society