Construction of complete embedded selfsimilar surfaces under mean curvature flow. Part I.
Author:
Xuan Hien Nguyen
Journal:
Trans. Amer. Math. Soc. 361 (2009), 16831701
MSC (2000):
Primary 53C44
Published electronically:
November 25, 2008
MathSciNet review:
2465812
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We carry out the first main step towards the construction of new examples of complete embedded selfsimilar surfaces under mean curvature flow. An approximate solution is obtained by taking two known examples of selfsimilar surfaces and desingularizing the intersection circle using an appropriately modified singly periodic Scherk surface, called the core. Using an inverse function theorem, we show that for small boundary conditions on the core, there is an embedded surface close to the core that is a solution of the equation for selfsimilar surfaces. This provides us with an adequate central piece to substitute for the intersection.
 1.
Sigurd
B. Angenent, Shrinking doughnuts, Nonlinear diffusion
equations and their equilibrium states, 3 (Gregynog, 1989) Progr.
Nonlinear Differential Equations Appl., vol. 7, Birkhäuser
Boston, Boston, MA, 1992, pp. 21–38. MR 1167827
(93d:58032)
 2.
S.
Angenent, T.
Ilmanen, and D.
L. Chopp, A computed example of nonuniqueness of mean curvature
flow in 𝐑³, Comm. Partial Differential Equations
20 (1995), no. 1112, 1937–1958. MR 1361726
(96k:58045), http://dx.doi.org/10.1080/03605309508821158
 3.
David
L. Chopp, Computation of selfsimilar solutions for mean curvature
flow, Experiment. Math. 3 (1994), no. 1,
1–15. MR
1302814 (95j:53006)
 4.
Ulrich
Dierkes, Stefan
Hildebrandt, Albrecht
Küster, and Ortwin
Wohlrab, Minimal surfaces. I, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 295, SpringerVerlag, Berlin, 1992. Boundary value problems. MR 1215267
(94c:49001a)
 5.
Gerhard
Huisken, Asymptotic behavior for singularities of the mean
curvature flow, J. Differential Geom. 31 (1990),
no. 1, 285–299. MR 1030675
(90m:53016)
 6.
Nicolaos
Kapouleas, Complete constant mean curvature surfaces in Euclidean
threespace, Ann. of Math. (2) 131 (1990),
no. 2, 239–330. MR 1043269
(93a:53007a), http://dx.doi.org/10.2307/1971494
 7.
Nikolaos
Kapouleas, Complete embedded minimal surfaces of finite total
curvature, J. Differential Geom. 47 (1997),
no. 1, 95–169. MR 1601434
(99a:53008)
 8.
Sebastián
Montiel and Antonio
Ros, Schrödinger operators associated to a holomorphic
map, Global differential geometry and global analysis (Berlin, 1990)
Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991,
pp. 147–174. MR 1178529
(93k:58053), http://dx.doi.org/10.1007/BFb0083639
 9.
X. H. NGUYEN, Construction of complete embedded selfsimilar surfaces under mean curvature flow. Part II, preprint.
 10.
height 2pt depth 1.6pt width 23pt, Construction of complete embedded selfsimilar surfaces under mean curvature flow. Part III, in preparation.
 1.
 S. B. ANGENENT, Shrinking doughnuts, in Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), vol. 7 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1992, pp. 2138. MR 1167827 (93d:58032)
 2.
 S. B. ANGENENT, D. L. CHOPP, AND T. ILMANEN, A computed example of nonuniqueness of mean curvature flow in , Comm. Partial Differential Equations, 20 (1995), pp. 19371958. MR 1361726 (96k:58045)
 3.
 D. L. CHOPP, Computation of selfsimilar solutions for mean curvature flow, Experiment. Math., 3 (1994), pp. 115. MR 1302814 (95j:53006)
 4.
 U. DIERKES, S. HILDEBRANDT, A. KüSTER, AND O. WOHLRAB, Minimal surfaces. I, vol. 295 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], SpringerVerlag, Berlin, 1992.
Boundary value problems. MR 1215267 (94c:49001a)
 5.
 G. HUISKEN, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), pp. 285299. MR 1030675 (90m:53016)
 6.
 N. KAPOULEAS, Complete constant mean curvature surfaces in Euclidean threespace, Ann. of Math. (2), 131 (1990), pp. 239330. MR 1043269 (93a:53007a)
 7.
 N. KAPOULEAS, Complete embedded minimal surfaces of finite total curvature, J. Differential Geom., 47 (1997), pp. 95169. MR 1601434 (99a:53008)
 8.
 S. MONTIEL AND A. ROS, Schrödinger operators associated to a holomorphic map, in Global differential geometry and global analysis (Berlin, 1990), vol. 1481 of Lecture Notes in Math., Springer, Berlin, 1991, pp. 147174. MR 1178529 (93k:58053)
 9.
 X. H. NGUYEN, Construction of complete embedded selfsimilar surfaces under mean curvature flow. Part II, preprint.
 10.
 height 2pt depth 1.6pt width 23pt, Construction of complete embedded selfsimilar surfaces under mean curvature flow. Part III, in preparation.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
53C44
Retrieve articles in all journals
with MSC (2000):
53C44
Additional Information
Xuan Hien Nguyen
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Address at time of publication:
Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan, Kansas 66506
DOI:
http://dx.doi.org/10.1090/S000299470804748X
PII:
S 00029947(08)04748X
Keywords:
Mean curvature flow,
selfsimilar,
singularities
Received by editor(s):
September 13, 2006
Published electronically:
November 25, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
