Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geometry of limit sets for expansive Markov systems


Authors: Katrin Gelfert and Michał Rams
Journal: Trans. Amer. Math. Soc. 361 (2009), 2001-2020
MSC (2000): Primary 37E05, 28A78, 57R30
DOI: https://doi.org/10.1090/S0002-9947-08-04759-4
Published electronically: November 3, 2008
MathSciNet review: 2465827
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the geometric and dynamical properties of expansive Markov systems.


References [Enhancements On Off] (What's this?)

  • 1. A. Biś and M. Urbański, Geometry of Markov systems and codimension-one foliations, preprint.
  • 2. R. Bowen, A horseshoe with positive measure, Invent. Math. 29 (1975), 203-204. MR 0380890 (52:1787)
  • 3. J. Cantwell and L. Conlon, Foliations and subshifts, Tohoku Math. J. 40 (1988), 165-187. MR 943817 (90c:57021)
  • 4. M. Denker and M. Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), 563-578. MR 1014246 (92k:58155)
  • 5. M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point, J. London Math. Soc. 43 (1991), 107-118. MR 1099090 (92k:58153)
  • 6. N. Dobbs, Hyperbolic dimension for interval maps, Nonlinearity 19 (2006), 2877-2894. MR 2273763 (2008f:37083)
  • 7. K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, 1997. MR 1449135 (99f:28013)
  • 8. F. Hofbauer and P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992), 84-98. MR 1157469 (93c:58113)
  • 9. S. Hurder, Dynamics and the Godbillon-Vey class: A history and survey, in Foliations: Geometry and Dynamics (Warsaw, 2000), World Sci. Publishing, 2002, 29-60. MR 1882764 (2003b:37044)
  • 10. S. Matsumoto, Measure of exceptional minimal sets of codimension one foliations, in A Fête of Topology, Papers Dedicated to Itiro Tamura, Y. Matsumoto, T. Mizutani, and S. Morita, eds., Academic Press, 1988, pp. 81-94. MR 928398 (89g:57040)
  • 11. W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993. MR 1239171 (95a:58035)
  • 12. Y. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, The University of Chicago Press, 1998. MR 1489237 (99b:58003)
  • 13. V. Pliss, On a conjecture due to Smale, Differ. Uravn. 8 (1972), 262-268. MR 0299909 (45:8957)
  • 14. A. Schwartz, A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963), 453-458. MR 0155061 (27:5003)
  • 15. M. Thaler, Transformations on $ [0,1]$ with infinite invariant measures, Israel J. Math. 46 (1983), 67-96. MR 727023 (85g:28020)
  • 16. M. Urbański, Parabolic Cantor sets, Fund. Math. 151 (1996), 241-277. MR 1424576 (98f:58076)
  • 17. P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc. 236 (1978), 121-153. MR 0466493 (57:6371)
  • 18. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer, 1981. MR 648108 (84e:28017)
  • 19. P. Walczak, Dynamics of Foliations, Groups and Pseudogroups, IM PAN Monografie Matematyczne, Birkhäuser, 2004. MR 2056374 (2005d:57042)
  • 20. M. Yuri, Zeta functions for certain non-hyperbolic systems and topological Markov approximations, Ergodic Theory Dynam. Systems 18 (1998), 1589-1612. MR 1658607 (2000j:37024)
  • 21. M. Yuri, Thermodynamic formalism for certain nonhyperbolic maps, Ergodic Theory Dynam. Systems 19 (1999), 1365-1378. MR 1721626 (2001a:37012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37E05, 28A78, 57R30

Retrieve articles in all journals with MSC (2000): 37E05, 28A78, 57R30


Additional Information

Katrin Gelfert
Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland
Address at time of publication: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730
Email: gelfert@pks.mpg.de

Michał Rams
Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland
Email: m.rams@impan.gov.pl

DOI: https://doi.org/10.1090/S0002-9947-08-04759-4
Keywords: Iterated function systems, exceptional minimal sets, thermodynamical formalism, non-uniformly hyperbolic systems, Hausdorff dimension
Received by editor(s): May 7, 2007
Published electronically: November 3, 2008
Additional Notes: The first author’s research was supported by Grant EU FP6 ToK SPADE2
The second author was supported by Grant EU FP6 ToK SPADE2 and by the Polish KBN Grant No 2P0 3A 034 25. Both authors are grateful for discussions with J. Rodriguez-Hertz that led us to Corollary \ref{cor:uh}.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society