-stability in finite groups

Authors:
U. Meierfrankenfeld and B. Stellmacher

Journal:
Trans. Amer. Math. Soc. **361** (2009), 2509-2525

MSC (2000):
Primary 20E25

DOI:
https://doi.org/10.1090/S0002-9947-08-04541-8

Published electronically:
December 16, 2008

MathSciNet review:
2471927

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite group, , and be the set subgroups containing . For and , the paper discusses the action of on . Apart from other results, it is shown that for groups of parabolic characteristic either is contained in a unique maximal -local subgroup, or there exists a maximal -local subgroup in such that is a nearly quadratic 2F-module for .

**[BHS]**D. Bundy, N. Hebbinghaus, B. Stellmacher,*The local -theorem*, J. Algebra**300**(2006), 741-789. MR**2228220 (2007c:20050)****[GLM]**R. M. Guralnick, R. Lawther, G. Malle,*The -modules for nearly simple groups*, J. Algebra**307**(2007), 643-676. MR**2275366 (2007k:20098)****[GM1]**R. M. Guralnick, G. Malle,*Classification of -modules*, I, J. Algebra**257**(2002), 348-372. MR**1947326 (2003m:20008)****[GM2]**R. M. Guralnick, G. Malle,*Classification of -modules*, II, Finite Groups 2003, 117-183, Walter de Gruyter and Co., Berlin, 2004. MR**2125071 (2006b:20062)****[KS]**H. Kurzweil, B. Stellmacher,*The theory of finite groups*, Springer Universitext, New York, 2004, xii+387 pp. MR**2014408 (2004h:20001)****[L]**R. Lawther,*Abelian sets of roots and -ranks*, J. Algebra**307**(2007), 614-642. MR**2275365 (2008b:20013)****[MSS]**U. Meierfrankenfeld, B. Stellmacher, G. Stroth,*The structure theorem*, in preparation.**[PPS]**C. Parker, G. Parmeggiani, B. Stellmacher,*The -theorem*, J. Algebra**263**(2003), 17-58. MR**1974077 (2004f:20033)****[Ste]**B. Stellmacher,*On the -local structure of finite groups, in groups, combinatorics and geometry*, LMS Lecture Notes Series**165**(1992), Cambridge University Press. MR**1200259 (94d:20027)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20E25

Retrieve articles in all journals with MSC (2000): 20E25

Additional Information

**U. Meierfrankenfeld**

Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48840

Email:
meier@math.msu.edu

**B. Stellmacher**

Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität, D24098 Kiel, Germany

Email:
stellmacher@math.uni-kiel.de

DOI:
https://doi.org/10.1090/S0002-9947-08-04541-8

Received by editor(s):
May 16, 2006

Received by editor(s) in revised form:
May 3, 2007

Published electronically:
December 16, 2008

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.