Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Subelliptic estimates for some systems of complex vector fields: Quasihomogeneous case

Authors: M. Derridj and B. Helffer
Journal: Trans. Amer. Math. Soc. 361 (2009), 2607-2630
MSC (2000): Primary 35B65; Secondary 32N15
Published electronically: November 24, 2008
MathSciNet review: 2471931
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For about twenty five years it was a kind of folk theorem that complex vector-fields defined on $ \Omega\times \mathbb{R}_t$ (with $ \Omega$ open set in $ \mathbb{R}^n$) by

$\displaystyle L_j = \frac{\partial}{\partial t_j} + i \frac{\partial\varphi}{... ...ial}{\partial x}\;,\; j=1,\dots, n\;,\; \mathbf{t}\in \Omega, x\in \mathbb{R},$

with $ \varphi$ analytic, were subelliptic as soon as they were hypoelliptic. This was the case when $ n=1$, but in the case $ n>1$, an inaccurate reading of the proof given by Maire (see also Trèves) of the hypoellipticity of such systems, under the condition that $ \varphi$ does not admit any local maximum or minimum (through a nonstandard subelliptic estimate), was supporting the belief for this folk theorem. Quite recently, J.L. Journé and J.M. Trépreau show by examples that there are very simple systems (with polynomial $ \varphi$'s) which are hypoelliptic but not subelliptic in the standard $ L^2$-sense. So it is natural to analyze this problem of subellipticity which is in some sense intermediate (at least when $ \varphi$ is $ C^\infty$) between the maximal hypoellipticity (which was analyzed by Helffer-Nourrigat and Nourrigat) and the simple local hypoellipticity (or local microhypoellipticity) and to start first with the easiest nontrivial examples. The analysis presented here is a continuation of a previous work by the first author and is devoted to the case of quasihomogeneous functions.

References [Enhancements On Off] (What's this?)

  • [De] M. Derridj. Subelliptic estimates for some systems of complex vector fields. In ``Hyperbolic problems and regularity questions''. Series Trends in Mathematics. Eds.: M. Padula and L. Zanghirati. Birkhäuser (2006), p. 101-108. MR 2298786 (2007k:35058)
  • [HeNi] B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians. Lecture Notes in Math. 1862, Springer-Verlag, Berlin 2005. MR 2130405 (2006a:58039)
  • [HeNo] B. Helffer and J. Nourrigat. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteur. Progress in Mathematics, Birkhäuser, Vol. 58 (1985). MR 897103 (88i:35029)
  • [Ho1] L. Hörmander. Hypoelliptic second order differential equations. Acta Mathematica 119 (1967), p. 147-171. MR 0222474 (36:5526)
  • [Ho2] L. Hörmander. Subelliptic operators. Seminar on singularities of solutions of partial differential equations. Ann. Math. Studies 91 (1978), p. 127-208. MR 547019 (82e:35029)
  • [JoTre] J.L. Journé and J.M. Trépreau. Hypoellipticité sans sous-ellipticité: le cas des systèmes de $ n$ champs de vecteurs complexes en $ (n+1)$- variables. Séminaire EDP in Ecole Polytechnique, April 2006. MR 2276079 (2007k:35055)
  • [Ko1] J. Kohn. Lectures on degenerate elliptic problems. Pseudodifferential operators with applications, C.I.M.E., Bressanone 1977 (1978), p. 89-151. MR 660652 (84a:35059)
  • [Ko2] J.J. Kohn. Hypoellipticity and loss of derivatives, with an appendix by M. Derridj and D. Tartakoff. Ann. of Math. 162(2) (2005), p. 943-986. MR 2183286 (2006k:35036)
  • [Mai1] H.M. Maire. Hypoelliptic overdetermined systems of partial differential equations. Comm. Partial Differential Equations 5 (4) (1980), p. 331-380. MR 567778 (81f:35027)
  • [Mai2] H.M. Maire. Résolubilité et hypoellipticité de systèmes surdéterminés. Séminaire Goulaouic-Schwartz 1979-1980, Exp. V, Ecole Polytechnique (1980). MR 600689 (83k:35026)
  • [Mai3] H.M. Maire. Necessary and sufficient conditions for maximal hypoellipticity of $ \bar\partial_b$. Unpublished (1979).
  • [Mai4] H.M. Maire. Régularité optimale des solutions de systèmes différentiels et du Laplacien associé : application au $ \Box_b$. Math. Ann. 258 (1981), p. 55-63. MR 641668 (83c:35027)
  • [Ni] F. Nier. Hypoellipticity for Fokker-Planck operators and Witten Laplacians. Course in China. Preprint September 2006.
  • [No1] J. Nourrigat. Subelliptic estimates for systems of pseudo-differential operators. Course in Recife (1982). University of Recife.
  • [No2] J. Nourrigat. Systèmes sous-elliptiques. Séminaire Equations aux Dérivées Partielles, 1986-1987, exposé V, Ecole Polytechnique (1987). MR 920023 (89d:35034)
  • [No3] J. Nourrigat. Subelliptic systems II. Inv. Math. 104 (2) (1991), p. 377-400. MR 1098615 (92f:35048)
  • [Tr1] F. Trèves. A new method of proof of the subelliptic estimates. Comm. Pure Appl. Math. 24 (1971), p. 71-115. MR 0290201 (44:7385)
  • [Tr2] F. Trèves. Study of a model in the theory of complexes of pseudo-differential operators. Ann. of Math. (2) 104 (1976), p. 269-324. See also erratum: Ann. of Math. (2) 113 (1981), p. 423. MR 0426068 (54:14014); MR 0607900 (82i:35044)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35B65, 32N15

Retrieve articles in all journals with MSC (2000): 35B65, 32N15

Additional Information

M. Derridj
Affiliation: 5 rue de la Juvinière, 78 350 Les loges en Josas, France

B. Helffer
Affiliation: Laboratoire de Mathématiques, Univ Paris-Sud and CNRS, F 91 405 Orsay Cedex, France

Received by editor(s): January 8, 2007
Received by editor(s) in revised form: July 19, 2007
Published electronically: November 24, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society