Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Congruence for rational points over finite fields and coniveau over local fields


Authors: Hélène Esnault and Chenyang Xu
Journal: Trans. Amer. Math. Soc. 361 (2009), 2679-2688
MSC (2000): Primary 14G15, 14G05
Published electronically: November 18, 2008
MathSciNet review: 2471935
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If the $ \ell$-adic cohomology of a projective smooth variety, defined over a local field $ K$ with finite residue field $ k$, is supported in codimension $ \ge 1$, then every model over the ring of integers of $ K$ has a $ k$-rational point. For $ K$ a $ p$-adic field, this is proved in (Esnault, 2007, Theorem 1.1). If the model $ \mathcal{X}$ is regular, one has a congruence $ \vert\mathcal{X}(k)\vert\equiv 1 $ modulo $ \vert k\vert$ for the number of $ k$-rational points (Esnault, 2006, Theorem 1.1). The congruence is violated if one drops the regularity assumption.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 0260747
  • 2. Pierre Berthelot, Spencer Bloch, and Hélène Esnault, On Witt vector cohomology for singular varieties, Compos. Math. 143 (2007), no. 2, 363–392. MR 2309991, 10.1112/S0010437X06002533
  • 3. Berthelot, P.: letter to Hélène Esnault dated April 23. 2007.
  • 4. Blickle, M., Esnault, H.: Rational singularities and rational points, preprint 2006, 12 pages, appears in the volume dedicated to F. Bogomolov, Pure and Applied Math. Quarterly.
  • 5. A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020
  • 6. A. Johan de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621. MR 1450427
  • 7. Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 0354657
  • 8. Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
  • 9. Hélène Esnault, Deligne’s integrality theorem in unequal characteristic and rational points over finite fields, Ann. of Math. (2) 164 (2006), no. 2, 715–730. With an appendix by Pierre Deligne and Esnault. MR 2247971, 10.4007/annals.2006.164.715
  • 10. Hélène Esnault, Coniveau over 𝔭-adic fields and points over finite fields, C. R. Math. Acad. Sci. Paris 345 (2007), no. 2, 73–76 (English, with English and French summaries). MR 2343555, 10.1016/j.crma.2007.05.017
  • 11. Kazuhiro Fujiwara, A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 153–183. MR 1971516
  • 12. Grothendieck, A.: Éléments de Géométrie Algébrique (EGA): III (2): Étude cohomologique des faisceaux cohérents, Publ. Math. IHES 17 (1963) IV (3): Études locales des schémas et des morphismes de schémas, Publ. Math. IHES 28 (1966).
  • 13. Seán Keel, Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math. (2) 149 (1999), no. 1, 253–286. MR 1680559, 10.2307/121025
  • 14. Milne, J.: Lectures on Étale Cohomology, v2 02, August 9 (1998), http://www.jmilne. org/math/.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14G15, 14G05

Retrieve articles in all journals with MSC (2000): 14G15, 14G05


Additional Information

Hélène Esnault
Affiliation: Abteilung von Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany
Email: esnault@uni-due.de

Chenyang Xu
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Address at time of publication: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Email: chenyang@math.princeton.edu, chenyang@ias.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-08-04629-1
Keywords: Rational point, congruence, coniveau
Received by editor(s): June 7, 2007
Received by editor(s) in revised form: August 27, 2007
Published electronically: November 18, 2008
Additional Notes: This work was partially supported by the DFG Leibniz Preis and the American Institute for Mathematics.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.