Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Diophantine approximation with arithmetic functions, I


Authors: Emre Alkan, Kevin Ford and Alexandru Zaharescu
Journal: Trans. Amer. Math. Soc. 361 (2009), 2263-2275
MSC (2000): Primary 11N64, 11N36, 11K60
DOI: https://doi.org/10.1090/S0002-9947-08-04822-8
Published electronically: December 10, 2008
MathSciNet review: 2471917
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a strong simultaneous Diophantine approximation theorem for values of additive and multiplicative functions provided that the functions have certain regularity on the primes.


References [Enhancements On Off] (What's this?)

  • 1. E. Alkan, G. Harman and A. Zaharescu, Diophantine approximation with mild divisibility constraints, J. Number Theory 118 (2006), 1-14. MR 2220258 (2007d:11078)
  • 2. R. C. Baker, Diophantine Inequalities, London Math. Soc. Monogr. (N.S.), vol. 1, Oxford Univ. Press, New York, 1986. MR 865981 (88f:11021)
  • 3. R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes. II, Proc. London Math. Soc. (3) 83 (2001), no. 3, 532-562. MR 1851081 (2002f:11125)
  • 4. H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics vol. 74, Springer-Verlag, New York, 2000. MR 1790423 (2001f:11001)
  • 5. H. Diamond, H. Halberstam and H.-E. Richert, Combinatorial sieves of dimension exceeding one, J. Number Theory 28 (1988), 306-346. MR 932379 (89g:11080)
  • 6. H. Diamond, H. Halberstam and H.-E. Richert, Combinatorial sieves of dimension exceeding one. II, In Analytic Number Theory, Proceedings of a Conference in Honor of Heini Halberstam, 265-308 (B. C. Berndt, H. G. Diamond and A. J. Hildebrand, eds.). Birkhäuser (1996). MR 1399343 (97e:11112)
  • 7. P. Erdős, Some remarks on Euler's $ \phi$ function, Acta Arith. 4 (1958), 10-19. MR 0110664 (22:1539)
  • 8. P. Erdős and A. Schinzel, Distributions of the values of some arithmetical functions, Acta Arith. 6, (1960/61), 473-485. MR 0126410 (23:A3706)
  • 9. P. Erdős and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713-721. MR 0000247 (1:40c)
  • 10. J. B. Friedlander, Fractional parts of sequences, Théorie des nombres (Quebec, PQ, 1987), 220-226, de Gruyter, Berlin, 1989. MR 1024564 (90m:11104)
  • 11. S. W. Graham, J. J. Holt and C. Pomerance, On the solutions to $ \phi(n)=\phi(n+k)$, Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), 867-882, de Gruyter, Berlin, 1999. MR 1689549 (2000h:11102)
  • 12. H. Halberstam, H.-E. Richert, Sieve methods, LMS Monographs No. 4, Academic Press, London (1974). MR 0424730 (54:12689)
  • 13. G. Harman, A. Kumchev, and P. A. Lewis, The distribution of prime ideals of imaginary quadratic fields, Trans. Amer. Math. Soc. 356 (2004), no. 2, 599-620. MR 2022713 (2004j:11139)
  • 14. F. Luca and I. E. Shparlinski, Approximating positive reals by ratios of kernels of consecutive integers, Diophantine analysis and related fields 2006, 141-149, Sem. Math. Sci., 35, Keio Univ., Yokohama, 2006. MR 2331654
  • 15. A. Schinzel, On functions $ \phi(n)$ and $ \sigma(n)$, Bull. Acad. Pol. Sci. Cl. III 3 (1955), 415-419. MR 0073625 (17:461c)
  • 16. I. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Mat. Z. 28 (1928), 171-199. MR 1544950
  • 17. D. Wolke, Eine Bemerkung über die Werte der Funktion $ \sigma (n)$, Monatsh. Math. 83 (1977), no. 2, 163-166. (German. English summary) MR 0441891 (56:282)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11N64, 11N36, 11K60

Retrieve articles in all journals with MSC (2000): 11N64, 11N36, 11K60


Additional Information

Emre Alkan
Affiliation: Department of Mathematics, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
Email: ealkan@ku.edu.tr

Kevin Ford
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
Email: ford@math.uiuc.edu

Alexandru Zaharescu
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois 61801
Email: zaharesc@math.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04822-8
Keywords: Diophantine approximation, additive functions, multiplicative functions
Received by editor(s): June 6, 2006
Published electronically: December 10, 2008
Additional Notes: The second author was supported in part by the National Science Foundation Grant DMS-0555367.
The third author was supported in part by the National Science Foundation Grant DMS-0456615.
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society