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TAUBERIAN CONDITIONS
FOR GEOMETRIC MAXIMAL OPERATORS

PAUL HAGELSTEIN AND ALEXANDER STOKOLOS

Abstract. Let B be a collection of measurable sets in R
n. The associ-

ated geometric maximal operator MB is defined on L1(Rn) by MBf(x) =

supx∈R∈B
1

|R|
∫
R |f |. If α > 0, MB is said to satisfy a Tauberian condition

with respect to α if there exists a finite constant C such that for all measurable
sets E ⊂ R

n the inequality |{x : MBχE(x) > α}| ≤ C|E| holds. It is shown
that if B is a homothecy invariant collection of convex sets in R

n and the as-
sociated maximal operator MB satisfies a Tauberian condition with respect to
some 0 < α < 1, then MB must satisfy a Tauberian condition with respect to
γ for all γ > 0 and moreover MB is bounded on Lp(Rn) for sufficiently large
p. As a corollary of these results it is shown that any density basis that is a
homothecy invariant collection of convex sets in R

n must differentiate Lp(Rn)
for sufficiently large p.

Let B be a collection of measurable sets in R
n. We define the associated geometric

maximal operator MB on L1(Rn) by

MBf(x) = sup
x∈R∈B

1
|R|

∫
R

|f | .

The operator MB is said to satisfy a Tauberian condition with respect to α if there
exists a finite constant C such that for any measurable set E ⊂ R

n the inequality

| {x : MBχE(x) > α} | ≤ C|E|

holds.
This is a very weak condition on a maximal operator - weaker in fact than

a restricted weak type (1,1) estimate. This is a useful condition on a maximal
operator, however, as was shown by A. Córdoba and R. Fefferman in their work
relating the Lp bounds of certain multiplier operators to the weak type

(
(p
2 )′, (p

2 )′
)

bounds of associated geometric maximal operators. (See [2] for complete details.)
Now, suppose we are given a maximal operator MB satisfying a Tauberian con-

dition such as, for instance,∣∣∣∣
{

x : MBχE(x) >
3
4

}∣∣∣∣ ≤ C|E| .
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One might wonder whether or not MB must be bounded on Lp(Rn) for p > 1
or whether or not MB must satisfy any given stronger Tauberian estimate, say,∣∣{x : MBχE(x) > 1

4

}∣∣ ≤ C ′|E|. That neither of the above holds, even in the case
that B is a homothecy invariant collection of sets, can be seen by the following
example. (Recall that a collection of sets in R

n is said to be homothecy invariant
if and only if any translate or dilate of any member of the collection also lies in the
collection.)

Example. Let B be the collection of sets in R
1 of the form I1 ∪ I2, where I1

and I2 are intervals and |I2| = 2|I1|. Note B is homothecy invariant. MB is not
bounded on Lp(R1) for 1 ≤ p < ∞, as MBχ[0,1](x) ≥ 1

3 for all x in R
1. Moreover

|{x : MBχ[0,1](x) > 1
4}| = ∞, and so MB does not satisfy a Tauberian condition

with respect to 1
4 .

MB does satisfy a Tauberian condition with respect to 3
4 , however. To see this,

let E be a set of finite measure, and let {Aj} ⊂ B be such that 1
|Aj |

∫
Aj

χE > 3
4

for each j. Now, each Aj is of the form Aj = A1
j ∪ A2

j , where A1
j and A2

j are
intervals and 2|A1

j | = |A2
j |. Since 1

|Aj |
∫

Aj
χE > 3

4 , we must have
1

|A1
j |

∫
A1

j
χE > 1

4 and 1
|A2

j |
∫

A2
j
χE > 1

4 . So by the Vitali Covering Theorem we

must have | ∪A1
j | ≤ 12|E| and | ∪A2

j | ≤ 12|E|. Therefore | ∪Aj| ≤ 24|E| and hence
|{x : MBχE(x) > 3

4}| ≤ 24|E|.
Note that in the above example the elements of B are not all convex. The primary

purpose of this paper is to show that if B is a homothecy invariant collection of
convex sets in R

n and the associated maximal operator MB satisfies a Tauberian
condition with respect to some 0 < α < 1, then MB must satisfy a Tauberian
condition with respect to γ for every γ > 0. As a corollary of the proof we shall
see that if B is a homothecy invariant collection of convex sets and MB satisfies
a Tauberian condition with respect to α for some 0 < α < 1, then MB must be
bounded on Lp(Rn) for sufficiently large p. As a further corollary we shall see that
any density basis that is a homothecy invariant collection of convex sets in R

n must
differentiate Lp (Rn) for sufficiently large p.

Our proof will consist of two main parts. First we shall show the desired result
in the special case that B is a homothecy invariant collection of rectangular paral-
lelepipeds. Secondly we shall reduce the general case involving homothecy invariant
collections of convex sets to this special case.

Proposition 1. Let B be a homothecy invariant collection of rectangular paral-
lelepipeds in R

n. Suppose for some 0 < γ < 1 there exists 0 < Cγ < ∞ such
that

|{x : MBχE(x) > γ}| ≤ Cγ |E|
holds for all measurable sets E in R

n. Then if α > 0, there exists 0 < Cα,γ < ∞
such that

|{x : MBχE(x) > α}| ≤ Cα,γ |E|
holds for all measurable sets E in R

n, where Cα,γ depends only on Cγ, α, γ, and
the dimension n.

Proof. If α ≥ γ, then we may trivially set Cα,γ = Cγ . So we assume without loss
of generality that 0 < α < γ. Let E be a measurable set in R

n. We inductively
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define Hk
B,γ(E) for k = 0, 1, 2, . . . by setting H0

B,γ(E) = E and

Hk
B,γ(E) =

{
x : MBχHk−1

B,γ (E)(x) ≥ γ
}

for k ≥ 1.

Lemma 1. Suppose R ∈ B and 1
|R|

∫
R

χE = α. Then R ⊂ HKα,γ

B,γ (E) for some
constant Kα,γ depending only on n, α, and γ.

Proof. Let Q denote the unit n-cube [0, 1]n in R
n. Now, since R is a rectangular

parallelepiped, there exists a linear bijection Λ : R
n → R

n such that {Λ(x) : x ∈
R} = Q.

For each set S ∈ R
n let

SΛ = {Λ(x) : x ∈ S} .

Also, let
BΛ = {SΛ : S ∈ B} .

Note if U and V are measurable sets in R
N and |V | �= 0, then |U|

|V | = |UΛ|
|VΛ| .

Hence MBχE ≥ α on a set S in B if and only if MBΛχEΛ ≥ α on SΛ. Now,
if {x : MBχE(x) ≥ α} = ∪Sj it follows that {x : MBΛχEΛ(x) ≥ α} = ∪SjΛ. As
(∪Sj)Λ = ∪SjΛ one then sees that(

Hk
B,γ(E)

)
Λ

= Hk
BΛ,γ(EΛ)

holds for any positive integer k. As RΛ = Q we realize it suffices to prove

Q ⊂ HKα,γ

BΛ,γ (EΛ)

for some constant Kα,γ depending only on n, α, and γ. As
∫

Q
χEΛ > α and Q ∈ BΛ

we then realize it suffices to prove the lemma in the special case that R = Q. Note
that as B is homothecy invariant we may also assume without loss of generality
that any n-cube in R

n with sides parallel to the axes lies in B.
So, we now suppose without loss of generality that R = Q, all n-cubes in R

n

whose sides are parallel to the axes lie in B, and
∫

Q
χE = α. We take the Calderón-

Zygmund decomposition of χE∩Q with respect to γ yielding a collection of cubes
{Qj} in Q with sides parallel to the axes. In particular the collection of cubes {Qj}
is such that 1

|Qj |
∫

Qj
χE > γ for each j and E ∩Q ⊂ ∪Qj almost everywhere. Note

that none of the cubes Qj is Q itself, as 1
|Q|

∫
Q

χE = α < γ. Also note that each
Qj is a dyadic cube and hence has a unique parent dyadic cube. For any constant
c > 1, we let cQj denote the cube containing Qj that has sidelength c times that
of Qj and also has a common corner with Qj and the parent cube of Qj .

Let now E0 = E ∩ Q, E1 = ∪Qj , and, for k ≥ 2,

Ek =
⋃
j

(
1
γ

)(k−1)/n

Qj .

Note that since ∣∣∣( 1
γ )

k
n Qj

∣∣∣∣∣∣( 1
γ )

k+1
n Qj

∣∣∣ = γ,
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we have MBχEk
≥ γ on Ek+1. Also observe that since the average of χE over

each Qk exceeds γ we have E1 ⊂ H1
B,γ(E), and as MBχEk

≥ γ on Ek+1 we have
Ek ⊂ Hk

B,γ(E) for each k.

Now let N be a positive integer such that
(

1
γ

)N

≥ γ · 2n. Let Q∗
j denote the

parent cube of Qj . Now, since∣∣∣∣( 1
γ

)N
n

Qj

∣∣∣∣∣∣Q∗
j

∣∣ ≥
(

1
γ

)N

· 1
2n

≥ γ

we have ∣∣EN+1 ∩ Q∗
j

∣∣∣∣Q∗
j

∣∣ ≥ γ,

and so MBχEN+1 ≥ γ on Q∗
j .

Now let Qj1 , Qj2 , . . . be elements of {Qj} such that the Q∗
ji

have disjoint interiors
and such that

∣∣∪Q∗
ji

∣∣ = |∪Q∗
k|. Note that each Q∗

ji
is contained in Q since Q /∈ {Qi}.

Note also that |E ∩ Q∗
jk
| ≤ γ

∣∣Q∗
jk

∣∣, as otherwise Q∗
jk

would have been a selected
Qj . Hence we have∣∣{x ∈ Q : MBχEN+1 (x) ≥ γ

}∣∣ ≥ ∣∣∪Q∗
j

∣∣
=

∑ ∣∣Q∗
jk

∣∣
≥ 1

γ

∑ ∣∣E ∩ Q∗
jk

∣∣
≥ 1

γ
|E0| .

In particular, ∣∣∣Q ∩HN+2
B,γ (E)

∣∣∣ ≥ 1
γ
|E0| .

Note that if
∣∣∣Q ∩HN+2

B,γ (E)
∣∣∣ ≥ γ we have Q ⊂ H(N+2)+1

B,γ (E). Otherwise by the
above argument we may obtain∣∣∣Q ∩H2(N+2)

B,γ (E)
∣∣∣ ≥ 1

γ

∣∣∣HN+2
B,γ (E) ∩ Q

∣∣∣
≥

(
1
γ

)2

|E0| .

More generally, if
∣∣∣Q ∩Hj(N+2)

B,γ (E)
∣∣∣ ≥ γ we have Q ⊂ Hj(N+2)+1

B,γ (E), or otherwise
we may obtain ∣∣∣Q ∩H(j+1)(N+2)

B,γ (E)
∣∣∣ ≥ (

1
γ

)j+1

|E0| .

Now, let Ñ be a positive integer such that α ·
(

1
γ

)Ñ

≥ γ. As |E0| = α we have(
1
γ

)Ñ

|E0| ≥ γ. Hence for some m ≤ (N + 2) · Ñ we have
∣∣Q ∩Hm

B,γ(E)
∣∣ ≥ γ. In

particular, Q ⊂ H(N+2)Ñ+1
B,γ (E). As any integer greater than or equal to log+(γ·2n)

log( 1
γ )
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would be acceptable for N and any integer greater than or equal to − log( γ
α )

log γ would
be acceptable for Ñ , we obtain the lemma, where

(1) Kα,γ =
⌈− log( γ

α )
log γ

⌉
·
⌈
2 +

log+(γ · 2n)
log( 1

γ )

⌉
+ 1.

�

We now complete the proof of Proposition 1. As |{x : MBχE(x) > γ}| ≤ C |E|
for every measurable set E if and only if |{x : MBχE(x) ≥ γ}| ≤ C |E| for every
measurable set E, by the Tauberian condition on MB we have that∣∣∣Hk+1

B,γ (E)
∣∣∣ ≤ Cγ

∣∣Hk
B,γ (E)

∣∣
holds for any positive integer k and any measurable set E. An immediate conse-
quence of the above lemma is that {x : MBχE(x) > α} ⊂ HKα,γ

B,γ (E), and hence

|{x : MBχE(x) > α}| ≤
∣∣∣HKα,γ

B,γ (E)
∣∣∣

≤ Cγ

∣∣∣HKα,γ−1
B,γ (E)

∣∣∣
≤ . . . ≤ CKα,γ

γ |E|.

So |{x : MBχE(x) > α}| ≤ Cα,γ |E|, where Cα,γ = C
Kα,γ
γ and Kα,γ is as in (1).

�

In Proposition 1 B is a homothecy invariant collection of rectangular paral-
lelepipeds. The following theorem is a generalization of Proposition 1 in that we
allow B to be a homothecy invariant collection of convex sets.

Theorem 1. Let B be a homothecy invariant collection of convex sets in R
n. Sup-

pose for some 0 < α < 1 there exists 0 < Cα < ∞ such that

|{x : MBχE(x) > α}| ≤ Cα |E|
holds for all measurable sets E in R

n. Then if δ > 0, there exists 0 < Cα,δ < ∞
such that

|{x : MBχE(x) > δ}| ≤ Cα,δ |E|
holds for all measurable sets E in R

n, where Cα,δ depends only on Cα, α, δ, and
the dimension n.

Proof. Given an ellipsoid E in R
n and c > 0, we let cE denote the c-fold dilate of E

that has the same center and orientation as E .
Let S ∈ B. As was proven by F. John in [4] (see also the related article [1]

by K. Ball), since S is convex there exists an ellipsoid ES contained in S such
that S ⊂ nES . Let RS be a rectangular parallelepiped containing nES of smallest
possible volume. Note that |RS | < 2n|nES | and hence |RS | < 2n · nn|S|. Moreover,
letting cS denote the c-fold dilate of S about the center of ES we have RS ⊂ 2nS,
since RS ⊂ 2nES and 2nES ⊂ 2nS.

Let B̃ = {RS : S ∈ B}. We may assume without loss of generality that the ES

and RS above are such that B̃ is homothecy invariant.
Note that MB̃f(x) ≤ 2n · nnMBf(x).
We now fix γ such that 0 < α < γ < 1.
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Let ρ = 1
2n·nn . Also let

(2) ε =
γ − α

2 − γ − α
ρ and N =

⎡
⎢⎢⎢

log
(
1 − 2(1−γ)

2−γ−α

)
log

(
1 − ρ − γ−α

2−γ−α ρ
)

⎤
⎥⎥⎥ .

One can show that

ρ
1 − (1 − ρ − ε)N+1

ρ + ε
>

1 − γ

1 − α
.

We will need the following technical lemma.

Lemma 2. Let ε > 0 be as above and S be a convex set in Q = [0, 1]n.
Let m ∈ N be the unique positive integer such that

ε

4n
≤

√
n2−m <

ε

2n
.

Then there exists a set of cubes {Qj} of sidelength 2−m such that

i) all the cubes Qj lie in Q and are members of the mesh Mm of dyadic
cubes of sidelength 2−m,

ii) each Qi is disjoint from S, and

iii) |∪Qi ∪ S| ≥ 1 − ε.

Proof. Let C be the set of cubes in the mesh Mm that lie in Q and are disjoint
from S. Suppose x ∈ Q \ S and d(x, S) > ε

2n . Then as the diameter of any cube
in Mm is less than ε

2n , we have x ∈ Qj for some Qj in C. So{
x ∈ Q : d(x, S) >

ε

2n

}
⊂

⋃
Qj∈C

Qj .

Now, since S is convex,∣∣∣{x ∈ Q : 0 < d(x, S) <
ε

2n

}∣∣∣ < 2n · ε

2n
= ε ,

so the desired result holds. �

If S is a set in R
n and τ is a translation operator given by τf(x) = f(x− σ) for

some σ ∈ R
n, we let τS denote the set such that χτS(x) = χS(x − σ). For each

c > 0 and set S in R
n we define the set δcS to be such that χδcS(x) = χS

(
1
c x

)
.

Lemma 3. Suppose R ∈ B̃. Let S ∈ B such that S ⊂ R, |R| < 2n · nn|S|, and
R ⊂ 2nS. Then there exists an a.e. disjoint collection {Sj} of translates of dilates
of S and a collection of translation operators {τj} such that Sj ⊂ R for each j,
|∪Sj | > 1−γ

1−α |R|, and R ⊂ τjδ2Nm+nSj for each j. (Here m is as given by Lemma
2 and N is as in (2).)

Proof. As the techniques of this proof are invariant under affine transformation, we
may assume without loss of generality that R = Q = [0, 1]n.

Note that |S|
|R| > ρ.

By Lemma 2, there exists a collection {Qj} of (a.e.) disjoint n-cubes contained
in R and disjoint from S lying in the mesh Mm such that |∪Qi ∪ S| ≥ 1 − ε.

Now let {τj} be a collection of translation operators such that Qj = τjδ2−mR for
each j.
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Let S1,j = τjδ2−mS. Note that

|S ∪ (∪S1,j)| ≥ ρ + (1 − ρ − ε) ρ

since |(∪Qj) ∪ S| ≥ 1 − ε and |S| > ρ.
Let S1 = S ∪ (∪S1,j) and let S2,j = τjδ2−mS1. Observe that

|S ∪ (∪S2,j)| ≥ ρ + (1 − ρ − ε) ρ + (1 − ρ − ε)2 ρ .

Let S2 = S ∪ (∪S2,j).
We proceed by induction. Sk+1,j and Sk+1 may be obtained from Sk via

Sk+1,j = τjδ2−mSk

and
Sk+1 = S ∪ (∪Sk+1,j) .

Note that

|S ∪ (∪jSk+1,j)| ≥ ρ + (1 − ρ − ε) ρ + . . . + (1 − ρ − ε)k+1 ρ.

Now recall N is such that

ρ
1 − (1 − ρ − ε)N+1

ρ + ε
>

1 − γ

1 − α
.

So

|SN | ≥ ρ + (1 − ρ − ε) ρ + . . . + (1 − ρ − ε)N ρ

= ρ
1 − (1 − ρ − ε)N+1

1 − (1 − ρ − ε)
= ρ

1 − (1 − ρ − ε)N+1

ρ + ε

>
1 − γ

1 − α
.

Note also that there exists a collection of translation operators τj,k such that

SN = S ∪
(
∪N

j=1 ∪k τj,kδ2−jmS
)

,

where the union above is disjoint. So in particular SN may be expressed as the
disjoint union ∪S′

j , where
∣∣∪S′

j

∣∣ > 1−γ
1−α and each S′

j is a translate of a dilate of S

such that S′
j ⊂ R. Moreover there exists a set of translation operators

{
τ ′
j

}
such

that S ⊂ τ ′
jδ2NmS′

j for each j. Since R ⊂ 2nS, there also exists a collection of
translation operators

{
τ ′′
j

}
such that R ⊂ τ ′′

j δ2Nm+nS′
j for each j. Relabeling

{
S′

j

}
as {Sj} and

{
τ ′′
j

}
as {τj}, we complete the proof of the lemma. �

The following lemma shows that, since MB satisfies a Tauberian condition with
respect to α, the maximal operator MB̃ satisfies a Tauberian condition with respect
to any γ greater than α.

Lemma 4. If α < γ < 1, there exists 0 < C ′
α,γ < ∞ such that

|{x : MB̃χE(x) > γ}| ≤ C ′
α,γ |E|

holds for all measurable sets E in R
n, where C ′

α,γ depends only on Cα, α, γ, and
the dimension n.
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Proof. Let E be a measurable set in R
n. Suppose R ∈ B̃ and 1

|R|
∫

R
χE > γ. Let

{Sj} be as in Lemma 3. Then there exists S̃ ∈ {Sj} such that 1
|S̃|

∫
S̃

χE > α, as
otherwise

|E ∩ R| ≤
(

1 − γ

1 − α
· α + 1 ·

(
1 − 1 − γ

1 − α

))
|R|

= γ |R| ,

contradicting the fact that |E ∩ R|/|R| > γ. By Lemma 3 we have R ⊂ τδ2Nm+n S̃
for some translation operator τ . We now define ∆α,γ by

∆α,γ = 1 +
n log 2
log( 1

α )

⎛
⎝

⎡
⎢⎢⎢

log
(
1 − 2(1−γ)

2−γ−α

)
log

(
1 − 1

2nnn − γ−α
2−γ−α

1
2nnn

)
⎤
⎥⎥⎥⎡

⎢⎢⎢−
log

(
γ−α

2−γ−α
1

2n+1nn+ 3
2

)
log 2

⎤
⎥⎥⎥ + n

⎞
⎠ .

One can show that ∆α,γ satisfies the inequality(
1
α

) 1
n (∆α,γ−1)

≥ 2Nm+n.

Note then that R ⊂ H∆α,γ−1
B,α (S̃) and in particular that R ⊂ H∆α,γ

B,α (E). As R is
arbitrary in B̃ subject to the condition that 1

|R|
∫

R
χE > γ, we then have

{x : MB̃χE(x) > γ} ⊂ H∆α,γ

B,α (E) .

By the Tauberian condition on MB we then have that

|{x : MB̃χE(x) > γ}| ≤ C∆α,γ
α |E|.

As C
∆α,γ
α depends only on Cα, α, γ, and n, and the desired result holds. �

We now come to the end of the proof of the main theorem. We may assume
0 < δ < α without loss of generality. The hypotheses of the theorem and Lemma
4 and its proof imply that |{x : MB̃χE(x) > γ}| ≤ C

∆α,γ
α |E| for α < γ < 1. We

now set γ = α̃ = 1+α
2 . Since B̃ is a homothecy invariant collection of rectangular

parallelepipeds, by the closing comments of the proof of Proposition 1 we have that
for any measurable set E in R

n∣∣∣∣
{

x : MB̃χE(x) >
δ

2nnn

}∣∣∣∣ ≤ C
∆α,α̃K δ

2nnn ,α̃

α |E| .

Since MBf(x) ≤ 2nnnMB̃f(x) we then have

|{x : MBχE(x) > δ}| ≤ C
∆α,α̃K δ

2nnn ,α̃

α |E| .

As ∆α,α̃ and K δ
2nnn ,α̃ depend only on α, δ, and n, the desired result holds. �

We now show that the proof of the above result implies that, if B is a homothecy
invariant collection of convex sets in R

n and the associated maximal operator MB
satisfies a Tauberian condition with respect to some 0 < α < 1, then MB must be
bounded on Lp(Rn) for sufficiently large p.
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Corollary 1. Let B be a homothecy invariant collection of convex sets in R
n.

Suppose for some 0 < α < 1 there exists a positive finite constant Cα such that

|{x : MBχE(x) > α}| ≤ Cα |E|
holds for every measurable set E in R

n. Then MB is bounded on Lp(Rn) for suffi-
ciently large p. In particular, there exists pα < ∞ depending only on α, n, and Cα

such that MB is bounded on Lp (Rn) for all p > pα.

Proof. Let δ < min( 1
100 , α). By the closing remarks of the proof of Theorem 1 we

have that

|{x : MBχE(x) > δ}| ≤ C
∆α,α̃K δ

2nnn ,α̃

α |E|

≤ C
∆α,α̃

(⌈
− log( α̃2nnn

δ
)

log α̃

⌉
·
⌈
2+ log+(2nα̃)

log( 1
α̃

)

⌉
+1

)
α |E|

≤ C∆α,α̃
α C

2∆α,α̃
− log( α̃2nnn

δ
)

log α̃ ·
⌈
2+ log+(2nα̃)

log( 1
α̃

)

⌉
α |E|

≤ C∆α,α̃
α

(
α̃ · 2n · nn

δ

)−2 log Cα

⌈
2+ log+(2nα̃)

log( 1
α̃

)

⌉
∆α,α̃

log α̃

|E| .

Hence MB is of restricted weak type (pα, pα), where

pα =
−2 log Cα

⌈
2 + log+(2nα̃)

log( 1
α̃ )

⌉
∆α,α̃

log α̃
,

and hence MB is bounded on Lp (Rn) for any p > pα. As pα depends only on α, n,
and Cα, the desired result follows. �

Recall that a collection of sets in R
n is said to be a density basis if it differentiates

L∞(Rn). We conclude this paper by observing the rather striking result that any
density basis consisting of a homothecy invariant collection of convex sets in R

n

must differentiate Lp (Rn) for sufficiently large p.

Corollary 2. Let B be a density basis that is a homothecy invariant collection of
convex sets in R

n. Then B differentiates Lp (Rn) for sufficiently large p.

Proof. Suppose B is a density basis that is a homothecy invariant collection of
convex sets in R

n. Then since B is a Busemann-Feller basis that is invariant by
homothecies, we know for some 0 < C < ∞ that

∣∣{x : MBχE(x) > 1
2

}∣∣ ≤ C |E|
holds for all measurable sets E in R

n. (See p. 69 of [3] for a proof of this result.)
By Corollary 1 we then have that MB is bounded on Lp (Rn) for sufficiently large
p and hence B differentiates Lp (Rn) for sufficiently large p. �
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