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REPRESENTATIONS OF LIE GROUPS
AND RANDOM MATRICES

BENOÎT COLLINS AND PIOTR ŚNIADY

Abstract. We study the asymptotics of representations of a fixed compact Lie
group. We prove that the limit behavior of a sequence of such representations
can be described in terms of certain random matrices; in particular operations
on representations (for example: tensor product, restriction to a subgroup)
correspond to some natural operations on random matrices (respectively: sum
of independent random matrices, taking the corners of a random matrix).
Our method of proof is to treat the canonical block matrix associated to a
representation as a random matrix with non-commutative entries.

1. Introduction

1.1. Need for an asymptotic theory of representations. One of the main
questions in representation theory of Lie groups and Lie algebras is to understand
multiplicities, commutant spaces and the structure of representations arising in
various natural situations, such as restriction to a subgroup or tensor product of
representations.

There are many reasons to study asymptotic versions of such questions in the
limit when the representation (and, possibly, also the Lie group) tends in some
sense to infinity.

• From the viewpoint of probability theory it is natural to consider the limit
theorems (such as laws of large numbers, central limit theorem, etc.) in
order to study the limits of probability measures on a given set. Reducible
representations of a given group, the subject of this article, can be alterna-
tively described as probability measures on the set of irreducible represen-
tations.

• Even though for nearly all problems in representation theory there are ex-
plicit answers [FH91, GW98], they are based on some combinatorial algo-
rithms which are too cumbersome to be tractable asymptotically. For this
reason in the asymptotic theory of representations one has to look for non-
combinatorial tools such as random matrix theory [Meh91] or Voiculescu’s
free probability theory [VDN92].
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• In theoretical physics it is a natural question as well. Indeed, finite-dimen-
sional representation theory is described as a nice discrete object which can
be scaled in some thermodynamic limit to model continuous phenomena
[KSW96a, KSW96b].

• Many important questions in the theory of operator algebras concern free
group factors. One of the foundations of Voiculescu’s free probability theory
was the fact that free products may be approximated in some sense by
random matrices. It was observed by Biane [Bia95] that also representations
may provide such finite-dimensional approximants with an adventage of
being fully constructive and non-random.

1.2. Asymptotics of representations of a fixed Lie group. Let G be a fixed
compact Lie group (in the following we consider the example when G = U(d) is the
unitary group). One of our motivations is to study the problem of decomposing
a given concrete reducible representation of G into irreducible components. For
example we wish to study the following interesting examples of reducible represen-
tations:

(1) restriction of a given irreducible representation of G′ to its subgroup G,
where G′ is a given compact Lie group (for example: G = U(d) and G′ =
U(d′) with d < d′);

(2) Kronecker tensor product of two given irreducible representations of G.

The irreducible representations of compact Lie groups are uniquely determined
by their highest weights (cf. Section 3 for definitions); in the example of G = U(d)
the irreducible representations are indexed by sequences of integers λ1 ≥ · · · ≥
λd. For explicit answers to the above questions there are well-known algorithms
involving combinatorial manipulations on the the highest weights. For example,
the decomposition of an irreducible representation of G′ = U(d + 1) to a subgroup
G = U(d) is given by Weyl’s branching rule; in the general case the answer to this
question is given by counting certain Littelmann paths [Lit95]. However, when we
are interested in the situation when the dimension of the representations tends to
infinity, these combinatorial algorithms become very cumbersome. In particular,
the direct study of the multiplicities in the above problems seems to be rather
difficult.

In order to avoid such difficulties we concentrate on approximate asymptotic
answers. More explicitly, for a given sequence (ρn) of representations of G for
which the highest weights of the irreducible components tend to infinity, we study
the limit distribution of a (rescaled) highest weight of a randomly chosen irreducible
component of ρn.

This situation in the asymptotic theory of representations in many ways re-
sembles statistical mechanics: when the number of particles in a physical system
grows, the complexity of its description also grows so that its exact solution becomes
quickly intractable. However, a more modest approach in which we are interested
only in some macroscopic quantities may result in a surprisingly simple descrip-
tion. Similarly, in the asymptotic theory of representations when we abandon the
attempts to find exact combinatorial solutions and restrict ourselves to a statistical
description we may expect dramatic simplifications. Since representations have a
highly non-commutative structure and the combinatorial algorithms behind are so
cumbersome, therefore we can expect quite surprising results.
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1.3. The main result: Representations of Lie groups and random ma-
trices. For a fixed compact Lie group G and a sequence (ρn) of representations
we construct a random matrix whose joint eigenvalues distribution depends on the
asymptotic behavior of the highest weights of ρn. The symmetry of this random
matrix depends on the group G; for example when G = U(d) is the unitary group
the corresponding random matrix will be a Hermitian d × d random matrix which
additionally is invariant under conjugation by unitary matrices.

We prove that some operations on the representations (such as Kronecker ten-
sor product, restriction to a subgroup) correspond to some natural operations on
the appropriate random matrices (sum of independent random matrices, taking the
corner of a random matrix, respectively). In this way problems concerning asymp-
totic properties of representations are reduced to much simpler analytic problems
concerning random matrices.

Some results proved in this paper were already considered by Heckman [Hec82].
However, as far as we could understand, his proofs are very different from ours.
Our methods are probabilistic and lead to many new applications and examples;
see Section 5.

1.4. The main tool: Random matrices with non-commutative entries. Let
ρ be a representation of a compact Lie group G; from here on we shall restrict our
attention to the corresponding representation of the Lie algebra g (if G is connected
the representation of the Lie group is uniquely determined by the representation of
the Lie algebra).

The family of matrices {ρ(x) : x ∈ g} can be viewed as a family of non-
commutative random variables ; in other words, ρ can be viewed as a non-commuta-
tive random vector in g�. We prove that asymptotically, when the representation
ρ tends to infinity, such a non-commutative random vector converges in distribu-
tion (after some rescaling) to a classical (commutative) random vector in g� and
hence—in many cases—can be identified with a random matrix.

This idea is closely related to the work of Kuperberg [Kup02, Kup05] who—
among other results—gives a new, conceptual proof of the result of Johansson
[Joh01] (see Theorem 5.4 below). Kuperberg’s idea is to treat elements of the Lie
algebra as non-commutative random variables and to show that for the tensor prod-
uct of representations a non-commutative central limit theorem can be applied. The
results of this article can therefore be viewed as an extension of some of Kuperberg’s
results [Kup02] from the central limit theorem related to the tensor product of rep-
resentations to other operations on representations such as restrictions or tensor
products of a fixed number of representations.

1.5. Asymptotics of representations for a series of Lie groups and free
probability. A variation of the above problem appears when we replace the fixed
group G by a classical series of compact Lie groups (Gn) and we consider a series
(ρn), where ρn is a representation of Gn; we are interested in solving the analogues
of the problems (1)–(2) from Section 1.2. For example, we may take Gn = U(n)
to be the series of the unitary groups. This case was studied in detail by Biane
[Bia95] who found a connection between asymptotics of such representations and
Voiculescu’s free probability theory [VDN92].
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In a subsequent paper [CŚ08] we show that the method of random matrices with
non-commuting entries can also be applied to this situation and the results obtained
in this way are significantly stronger than the ones of Biane [Bia95].

1.6. Asymptotics of representations of symmetric groups. It turns out that
the ideas presented in this article can also be applied to the case of the symmet-
ric groups. A canonical matrix associated to a representation of the symmetric
group was given by Biane [Bia98] and it turns out that the recent results of the
second-named author [Śni06] were proved by treating (in a very concealed way) this
matrix as a permutationally-invariant random matrix with non-commuting entries.
A subsequent paper [ŚS08] will present the details.

1.7. Overview of this article. In Section 2 we introduce some notation concern-
ing non-commutative random variables. In Section 3 we state some facts about
representation theory and fix some notation. In Section 4 we prove the main result
and in Section 5 we investigate its new consequences.

2. Non-commutative random variables

2.1. Non-commutative probability spaces. Let (Ω, M, P ) be a Kolmogorov
probability space. We consider an algebra

L∞−(Ω) =
⋂
n≥1

Ln(Ω)

of random variables with all moments finite. This algebra is equipped with a
functional E : L∞−(Ω) → R which to a random variable associates its mean value.

We consider a generalization of the above setup in which the commutative algebra
L∞−(Ω) is replaced by any (possibly non-commutative) �-algebra A with a unit and
E : A → R is any linear functional which is normalized (i.e. E(1) = 1), positive (i.e.
E(x�x) > 0 for all x ∈ A such that x �= 0) and tracial (i.e. E(xy) = E(yx) for all
x, y ∈ A). The elements of A are called non-commutative random variables and the
functional E is called the mean value or expectation. We also say that (A, E) is a
non-commutative probability space [VDN92].

Here are two motivating examples, which will be used in the following.

Example 2.1. For any Kolmogorov probability space, the corresponding pair(
L∞−(Ω), E

)
is a non-commutative probability space.

Example 2.2. For any Kolmogorov probability space and integer d ≥ 1 we consider
the algebra L∞−(Ω)⊗Md = L∞−(Ω;Md) of d× d random matrices and we equip
it with a functional

E(x) = E(trx),
for any random matrix x, where E on the right-hand side denotes the mean value
and

tr x =
1
d

Tr x

is the normalized trace. In this way
(
L∞−(Ω;Md), E

)
is a non-commutative prob-

ability space.

Any non-commutative probability space (A, E) can be equipped with the corre-
sponding L2 norm:

‖x‖L2 =
√

E(xx�).
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Notice that the above definitions of non-commutative probability spaces and
random variables do not require any analytic notions other than positivity. In par-
ticular, as we shall see in the remaining part of this section, by the distribution of
a non-commutative random variable we understand the collection of its mixed mo-
ments. While this approach turns out to be very useful to state and prove our results
and it has the advantage of encompassing many non-bounded random variables, it
has a couple of drawbacks. For instance, the convergence of non-commutative dis-
tributions as defined in Section 2.2 does not coincide in the commutative case with
the weak convergence of probability measures; therefore some of our corollaries con-
cerning convergence in distribution of classical random variables will be formulated
and proved not in the most desirable weak topology of probability measures but
with respect to the moments convergence. This issue and the way to fix it in the
cases which are of our interest (so that the convergence in the weak topology of
probability measures in fact holds true) are discussed in Section 4.3.

2.2. Random vectors. Let V be a finite-dimensional (real) vector space. If v :
Ω → V is a random variable valued in the space V we say that v is a (classical)
random vector in V . We say that v has all moments finite if E‖v‖k < ∞ holds true
for any exponent k ≥ 1. Notice that this definition does not depend on the choice
of the norm ‖ · ‖ on V . For a random vector v with all moments finite we define its
moments

(2.1) mk = mE

k(v) = E v ⊗ · · · ⊗ v︸ ︷︷ ︸
k times

∈ V ⊗k.

In the case when V = R, v becomes a usual number-valued random variable;
furthermore V ⊗k = R⊗k ∼= R and the moments mk = Evk ∈ R are just real
numbers and this definition coincides with the usual notion of the moments of a
random variable. In the following we are interested in the space{

v : Ω → V such that E‖v‖k < ∞ for each k ≥ 1
}

of random vectors with all moments finite, which we will view as a tensor product

(2.2) V ⊗ L∞−(Ω).

2.3. Non-commutative random vectors. Let (A, E) be a non-commutative
probability space; in analogy to (2.2) we call the elements of V ⊗A non-commutative
random vectors in V (over a non-commutative probability space (A, E)).

Given v1 = x1 ⊗ a1 ∈ V1 ⊗ A and v2 = x2 ⊗ a2 ∈ V2 ⊗ A we define

v1⊗̂v2 = (x1 ⊗ a1)⊗̂(x2 ⊗ a2) = (x1 ⊗ x2 ⊗ a1a2) ∈ V1 ⊗ V2 ⊗ A

and its linear extension on non-elementary tensors. Whenever v1 = v2 with V1 = V2

one shortens the notation as v⊗̂2 ∈ V ⊗2 ⊗A and one extends it by recursion to the
definition of

v⊗̂k ∈ V ⊗k ⊗ A.

Observe that this definition matches the definition of the tensor product of compact
quantum groups of Woronowicz [Wor87] provided that A is a quantum group and
V a representation of A.

The k-th order vector moment mE

k(v) is defined as

mE

k(v) = (Id⊗E)v⊗̂k ∈ V ⊗k.
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If there is no ambiguity we might remove the superscript E. Note that in the case
of Example 2.1 when A is commutative the moments, as defined above, coincide
with the old definition (2.1) of the moments of a random vector.

We define the distribution of a non-commutative random vector as its sequence
(mE

k(v))k=1,2,... of moments. Accordingly, convergence in distribution of non-com-
mutative random vectors is to be understood as convergence of the moments.

The above definitions can be made more explicit as follows: let e1, . . . , ed be a
base of the vector space V . Then a (classical) random vector v in V can be viewed
as

(2.3) v =
∑

i

aiei,

where the ai are the (random) coordinates. Then a non-commutative random vector
can be viewed as the sum (2.3) in which the ai are replaced by non-commutative
random variables. One can easily see that the sequence of moments

mk(v) =
∑

i1,...,ik

E(ai1 · · · aik
) ei1 ⊗ · · · ⊗ eik

contains nothing else but the information about the mixed moments of the non-
commutative coordinates a1, . . . , ad, and the convergence of moments is equivalent
to the convergence of the mixed moments of a1, . . . , ad.

The following result provides a necessary and sufficient condition for a sequence
of moments to be those of a commutative vector.

Proposition 2.3. A non-commutative random vector v actually arises from a com-
mutative probability space iff for each value of k ∈ {1, 2, . . . } the tensor mE

k(v) ∈
V ⊗k is invariant under the action of the symmetric group.

Proof. The necessity is trivial. For sufficiency, if mE

k(v) are invariant under the
action by conjugation of the symmetric group, this implies that the GNS represen-
tation of A with respect to E is its abelianized quotient. Since E is supposed to be
faithful the proof is complete. �

3. Preliminaries of representation theory

3.1. Structure of compact Lie groups. In this section we recall some facts
about Lie groups and their algebras [BtD95, FH91]. Let G be a compact Lie group
and let H ⊆ G be a maximal abelian subgroup and let h ⊆ g be the corresponding
Lie algebras. We consider the adjoint action of h on the vector space g; then there
is a decomposition

(3.1) g = h ⊕
⊕
α∈h�

gα

into eigenspaces. The non-zero elements α for which the corresponding eigenspace
gα is non-trivial are called roots. We identify h� as a set of functionals on g which
vanish on all root spaces gα; thus

(3.2) h
� ⊆ g

�.

Suppose that g is equipped with a G-invariant scalar product; in this way g ∼= g�

and h ∼= h�. The above isomorphisms and the inclusion h ⊆ g allow us to consider
the inclusion h� ⊆ g�. This inclusion does not depend on the choice of the G-
invariant scalar product on g and it coincides with the inclusion (3.2) considered
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above. More generally, throughout all this paper, whenever we state a result related
to g but do not mention the invariant scalar product, this means that the result
does not depend on the choice of the scalar product.

By definition, the Weyl group W = {g ∈ G : gHg−1 = H} is the set of the
elements which normalize H. The Weyl group W is always finite.

Every element x ∈ g is conjugate to some element y ∈ h (i.e. there exists an
element g ∈ G such that Adg(x) = y, where Ad : G → End(g) denotes the ad-
joint representation) and y is determined only up to the action of the Weyl group.
Similarly, every element x ∈ g� is conjugate to some element y ∈ h� (which is
determined only up to the action of the Weyl group).

Example 3.1. For G = U(n) we may take H to be the group of diagonal unitary
matrices. Then g is the set of n× n anti-Hermitian matrices and h is the set of di-
agonal matrices with imaginary entries. In this case W is the group of permutation
matrices and hence is isomorphic to the symmetric group Sn. We equip g with a
G-invariant scalar product 〈x, y〉 = Trxy� and thus we identify g ∼= g� and h ∼= h�.
Clearly, every element x ∈ g ∼= g� is conjugate by a unitary matrix to some diagonal
matrix y ∈ h ∼= h� which is determined by the eigenvalues of x. The freedom of
choosing the order of the diagonal elements of y corresponds to the action of the
Weyl group Sn.

Remark 3.2. In random matrix theory it is more customary to work with the
space of Hermitian matrices instead of the space of anti-Hermitian matrices; for
this reason we may consider a simple isomorphism between these spaces given by
multiplication by i.

The above example heuristically motivates our thinking that for a given ele-
ment x ∈ g� the corresponding element y ∈ h� contains the information about the
eigenvalues of x.

3.2. Irreducible representations and highest weights. Let ρ : g → End(V )
be an irreducible representation. The representation space can be decomposed into
the eigenspaces of the maximal abelian subalgebra h:

(3.3) V =
⊕
α∈h�

Vα;

in other words, h ∈ h acts on Vα as multiplication by α(h). The elements α �= 0 for
which the corresponding eigenspace Vα is non-trivial are called weights.

Let us fix some element t ∈ h which is generic in a sense that for any non-zero
weight α we have α(t) �= 0. Now a weight α is called positive if α(t) > 0; otherwise
it is called negative. A similar convention concerns roots as well. The highest
weight of a representation is the weight α for which α(t) takes the maximal value.
In fact, any irreducible representation is uniquely determined (up to equivalence)
by its highest weight. The weight space gα corresponding to the highest weight is
always one-dimensional. Clearly, the above definitions depend on the choice of t;
nevertheless the notion of highest weight is well defined (up to the action of the
Weyl group).

3.3. Enveloping algebra. The enveloping algebra of g, denoted by ḡ, is the free
algebra generated by the elements of g quotiented by relations gh − hg = [g, h]
for any g, h ∈ g. Usually we work over the complex (complexified) algebra. This
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algebra is naturally endowed with a �-algebra structure obtained by declaring that
the elements of g (before complexification) are anti-Hermitian elements. For our
purposes, it has the following two important features:

• an irreducible representation (ρ, V ) of g gives rise to an onto algebra ho-
momorphism ḡ → End(V ) and conversely;

• therefore, irreducible representations of g are in one-to-one correspondence
with minimal tracial states on ḡ.

We will need the following theorem, known as the Poincaré-Birkhoff-Witt theo-
rem.

Theorem 3.3. If h1, . . . , hn is a basis of g as a vector space, then

(hα1
1 · · ·hαn

n )α1,...,αn∈N

is a basis of ḡ as a vector space. In particular, there is a filtration on ḡ defined as
follows: the degree of p ∈ ḡ is the smallest k such that p is a sum of monomials of
elements in g with at most k factors.

3.4. Reducible representations and random highest weights. Let ρ : G →
End(V ) be a (possibly reducible) representation of G on a finite-dimensional vector
space V . We may decompose ρ as a sum of irreducible representations:

ρ =
⊕
λ∈h�

nλρλ,

where ρλ denotes the irreducible representation of G with the highest weight λ and
nλ ∈ {0, 1, 2, . . . } denotes its multiplicity in ρ.

We define a probability measure µρ on h� such that the probability of λ ∈ h� is
equal to

nλ · (dimension of ρλ)
(dimension of V )

;

in other words, it is proportional to the total dimension of all the summands of type
[ρλ] in ρ. In this way the probability measure µρ encodes in a compact way the
information about the decomposition of ρ into irreducible components. We define
the random highest weight associated to the representation ρ as a random variable
distributed accordingly.

Remark 3.4. If we literally follow the above definition, then µρ is a certain proba-
bility measure on the Weyl chamber. This definition has the disadvantage that it
depends on the choice of the Weyl chamber; therefore sometimes it will be conve-
nient to understand by µρ the W -invariant probability measure on h� obtained by
symmetrizing the above measure by the action of the Weyl group W .

3.5. Random matrix with specified eigenvalues. For an element λ ∈ h� we
consider a random vector in g� given by λ̃ = Adg λ ∈ g�, where g is a random
element of G, distributed according to the Haar measure on G. We will say that
λ̃ is a G-invariant random matrix with the eigenvalues λ. This terminology was
motivated by the following example.

Example 3.5. If G = U(n) is the group of the unitary matrices and λ =
diag(λ1, . . . , λn) ∈ h� is a diagonal matrix, then the distribution of λ̃ is indeed
equal to the uniform measure on the manifold of anti-Hermitian matrices with the
eigenvalues λ1, . . . , λn.
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We may extend the above definition to the case when λ ∈ h� is random; in
such a case we will additionally assume that g and λ are independent. If µ is a
probability measure on h� we may treat it as a distribution of the random variable
λ; in this case we say that λ̃ is a G-invariant random matrix with the distribution
of eigenvalues given by µ. We denote by µ̃ the corresponding distribution of λ̃.

Remark 3.6. It would be more appropriate to call λ a G-invariant random vector in
g�; nevertheless in the most interesting examples the Lie groups under consideration
carry some canonical matrix structure. Hence the elements of g� can be indeed
viewed as matrices.

The moments of G-invariant matrices are characterized by the following lemma.

Lemma 3.7. Let µ be a probability measure on h� with all moments finite and let
µ̃ be the corresponding distribution of a G-invariant random matrix.

For each k the moment mk = mk(µ̃) ∈ (g�)⊗k is the unique element such that:

(1) mk is invariant under the adjoint action of G,
(2) actions of mk : g⊗k → R and mk(µ) : g⊗k → R coincide on G-invariant

tensors in g⊗k (where above mk(µ) denotes the canonical extension of
mk(µ) ∈ (h�)⊗k which is possible thanks to the inclusion h� ⊆ g�).

Proof. Point (1) follows easily from the invariance of the Haar measure.
For any elements x1, x2 ∈ g� which are conjugate to each other the restrictions

of the maps x⊗k
1 , x⊗k

2 : g⊗k → R to G-invariant tensors coincide. In this way point
(2) follows easily.

For x ∈ g⊗k let

x′ =
∫

G

Ad⊗k
g (x) dg

be the average over the Haar measure on G. Clearly, x′ is a G-invariant tensor.
Since (

mk(µ̃)
)
(x) =

(
mk(µ̃)

)
(x′),

therefore the values of the functional mk(µ̃) are uniquely determined by its values
on G-invariant tensors, which shows the uniqueness of mk. �

Remark 3.8. Similarly as in Remark 3.6, it is sometimes more convenient to under-
stand the distribution of the eigenvalues of a random element of g� as a W -invariant
measure on h�.

4. Representations and random matrices

with non-commutative entries

4.1. The main result. Let ρ : g → End(V ) be a representation of g. We shall
view ρ as an element of g� ⊗ End(V ); in other words, ρ is a non-commutative
random vector in g� over a non-commutative probability space

(
End(V ), tr

)
. The

sequence of its moments mk = mk(ρ) ∈ (g�)⊗k, or equivalently, mk : g⊗k → C is
given explicitly by

mk(g1 ⊗ · · · ⊗ gk) = tr
[
ρ(g1) · · · ρ(gk)

]
.

The following theorem is the main result of this article.
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Theorem 4.1. Let (εn) be a sequence of real numbers which converges to zero. For
each n let ρn : g → End(Vn) be a representation of g and let λn be the corresponding
random highest weight. Let A be a G-invariant random matrix with all moments
finite.

Then the following conditions are equivalent:
(1) the distributions of the random variables εnλn converge in moments to the

distribution of eigenvalues of A;
(2) the sequence εnρn of non-commutative random matrices converges in dis-

tribution to A.

Proof. Suppose that condition (1) holds true. It is enough to prove that from
any subsequence (εk(n)ρk(n)) one can choose a subsequence (εk(l(n))ρk(l(n))) which
converges in distribution to the random matrix A.

Let a subsequence (εk(n)ρk(n)) be given; by Lemma 4.2 and the compactness
argument it follows that there exists a subsequence (εk(l(n))ρk(l(n))) which converges
in distribution to some random matrix M ∈ g� ⊗ A with non-commutative entries
(for some non-commutative probability space (A, E)). It is enough to prove that M
is the G-invariant random matrix in g� with the same distribution of the eigenvalues
as for A. In order to keep the notation simple, instead of (εk(l(n))ρk(l(n))) we will
write (εnρn).

Firstly, observe that Lemma 4.2 shows that∥∥[εnρn(x1), εnρn(x2)]
∥∥

L2 =
∥∥ε2nρn

(
[x1, x2]

)∥∥
L2

≤
(
E‖εnλn‖2

) 1
2 εn

∥∥[x1, x2]
∥∥ → 0,

where we used the fact that the first factor on the right-hand side converges to some
constant depending on the distribution of eigenvalues of A. This shows that the
elements {M(x) ∈ A : x ∈ g} commute; hence M can be identified with a classical
random variable (valued in g).

Secondly, since each of the random matrices εnρn is G-invariant, the random
matrix M is also G-invariant.

Thirdly, let x ∈ g⊗k be invariant under the action of Ad⊗k : G → End(g⊗k). For
every irreducible representation ρ we have that ρ⊗k(x) is a multiple of the identity,
hence can be identified with a complex number. The exact value of this number is
equal to ρ⊗k(x)

∣∣
Vλ

, which can be estimated with the help of Lemma 4.3. Therefore
for a (possibly reducible) representation ρn we have(

mk(εnρn)
)
(x) = EΛ⊗k

n (x) + (terms of degree at least 1 in ε),

where Λn = εnλn, where λn is the random highest weight associated to the repre-
sentation ρn. Hence(

mk(M)
)
(x) = lim

n→∞

(
mk(εnρn)

)
(x) = lim

n→∞

(
mk(εnλn)

)
(x) =

(
mk(A)

)
(x).

The above equality and Lemma 3.7 show that the distribution of the eigenvalues
of M coincides with the distribution of eigenvalues of A, which finishes the proof
that (1) =⇒ (2).

Suppose that condition (2) holds true. In order to prove (1)—similarly as in the
proof of the implication (1) =⇒ (2)—it is enough to show that from any subse-
quence (εk(n)λk(n)) one can choose a subsequence (εk(l(n))λk(l(n))) which converges
in moments to the distribution of the eigenvalues of A.
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Lemma 4.4 can be used to show that if k is even, then the sequence of moments
mk(εnλn) is bounded; hence for every k the sequence of moments mk(εnλn) is
bounded. Again, by a compactness argument we can find a subsequence which
converges in moments to the distribution of eigenvalues of some random matrix
A′; from the implication (1) =⇒ (2) it follows that the random matrices A and
A′ must have equal moments of their entries. From Lemma 4.5 it follows that the
eigenvalues of A′ have the same moments as the eigenvalues of A, which finishes
the proof. �

4.2. Key lemmas. We start with the following estimate:

Lemma 4.2. We equip g with a G-invariant scalar product; in this way we equip
g ∼= g� with the corresponding norm.

Let a unitary representation of a group G on a finite-dimensional Hilbert space
be given and let ρ be the corresponding representation of a Lie algebra g. If ρ is
irreducible with highest weight λ, then for any x ∈ g,

(4.1) ‖ρ(x)‖ ≤ ‖x‖ ‖λ‖,
where the norm on the left-hand side denotes the operator norm.

Proof. Since x ∈ g is conjugate to some element of h, it is enough to prove (4.1)
for x ∈ h. For such elements the action of ρ(x) is diagonal with respect to the
decomposition (3.3) and

‖ρ(x)‖ = max
α

|α(x)| ≤ |λ(x)|,

where the maximum runs over the set of roots α ∈ g� contributing to (3.3). �

For a representation ρ : g → End(V ) we define ρk : g⊗k → End(V ) on simple
tensors by

ρk(g1 ⊗ · · · ⊗ gk) = ρ(g1) · · · ρ(gk)
and extend it to the general case by linearity.

Lemma 4.3. Let ε be a number, let ρ : g → End(V ) be an irreducible representation
of g and let λ be the corresponding highest weight.

Let z ∈ g⊗k be given; by a small abuse of notation we will denote by ρk(z)
∣∣
Vλ

:
Vλ → Vλ the restriction of ρk(z) to Vλ projected again onto Vλ. Since the highest-
weight space Vλ in the decomposition (3.3) is one-dimensional, we will identify
ρk(z)

∣∣
Vλ

with a complex number. Furthermore, εkρk(z)
∣∣
Vλ

is a polynomial in {Λ(x) :
x ∈ g} and ε, where Λ = ελ. This polynomial can be written as

εkρk(z)
∣∣
Vλ

= Λ⊗k(z) + (terms of degree at least 1 in ε).

Proof. It is enough to prove that

εkρ(g1) · · · ρ(gk)
∣∣
Vλ

=

{
Λ(g1) · · ·Λ(gk) + (terms of degree at least 1 in ε) if g1, . . . , gk ∈ h,

(terms of degree at least 1 in ε) otherwise

holds true for all k-tuples g1, . . . , gk ∈ g such that each gi belongs either to h or
to one of the root spaces gα in the decomposition (3.1). We use induction over k:
assume that the lemma holds true for all k′ < k.
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Let π ∈ Sk be a permutation. Thanks to the commutation relations xy =
yx + [x, y] in the universal enveloping algebra of g we may write in the universal
enveloping algebra:

g1 · · · gk = gπ(1) · · · gπ(k) + (summands with at most k − 1 factors);

hence

εkρ(g1)· · ·ρ(gk)
∣∣
Vλ

= εkρ(gπ(1))· · ·ρ(gπ(k))
∣∣
Vλ

+ εkρ(summands with at most k − 1 factors)
∣∣
Vλ

.

The induction hypothesis can be applied to the second summand on the right-hand
side and it shows that it is of degree at least 1 in ε; therefore

εkρ(g1)· · ·ρ(gk)
∣∣
Vλ

= εkρ(gπ(1))· · ·ρ(gπ(k))
∣∣
Vλ

+ (terms of degree at least 1 in ε).

It follows that it is enough to consider the case when the elements g1, . . . , gk are
sorted in such a way that for some r, s, t ≥ 0 such that r+s+ t = k the initial r ele-
ments g1, . . . , gr belong to root spaces corresponding to the negative roots, the next
s elements gr+1, . . . , gr+s belong to h and the final t elements gr+s+1, . . . , gr+s+t

belong to root spaces corresponding to the positive roots. A direct calculation
shows that

εkρ(g1) · · · ρ(gk)
∣∣
Vλ

=

{
εkλ(g1) · · ·λ(gk) if g1, . . . , gk ∈ h,

0 otherwise

and thus the inductive step follows. �
Lemma 4.4. For a given irreducible representation ρλ of g we denote

Mλ = −
∑

i

ρλ(xi)2,

where (xi) denotes an orthogonal basis of g (regarded as a real vector space). Mλ

is a multiple of the identity and hence can be identified with a complex number.
There exists a constant C with the property that

|λ|2 ≤ 2Mλ + C

for any value of λ.

Proof. Let (ei) be some linear basis of g (this time regarded as a complex vector
space) and (fi) be its dual base. Then

Mλ = −
∑

i

ρλ(ei)ρλ(fi).

It will be convenient for us to take as (ei) a union of two families: firstly from
each root space gα we select some non-zero vector (the corresponding dual vector
fi belongs to g−α) and secondly we select some base of h.

Since Mλ is a multiple of the identity, Lemma 4.3 can be used to evaluate it. It
is easy to check that there is some element x ∈ h (which does not depend on the
choice of λ) with the property that

Mλ = |λ|2 + λ(x).

The estimate
2λ(x) ≥ −|λ|2 − |x|2

finishes the proof. �
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Lemma 4.5. Let λ be a random vector in h which is invariant under the action of
the Weyl group W and let A be the corresponding G-invariant random vector in g.
Then each moment mk(λ) is a polynomial function in the moment mk(A).

Proof. Let us assume for simplicity that g is semisimple. The Harish-Chandra iso-
morphism (see [Kna02] for a reference) is an isomorphism between Z(ḡ) (the center
of the enveloping algebra ḡ) and S(h)W (the W -invariant part of the symmetric
algebra S(h)).

The isomorphism of vector spaces ḡ ∼=
⊕

k≥0 Symk(g) implies that

(4.2) Z(ḡ) ∼=
⊕
k≥0

[
Symk(g)

]G;

similarly

(4.3) S(h)W ∼=
⊕
k≥0

[
Symk(h)

]W
.

The Harish-Chandra isomorphism provides an isomorphism between the right-hand
sides of (4.2) and (4.3). Since it preserves the gradation it is the required map.

The general case follows from the fact that the Lie algebra g can be written as
a direct sum of its center and a semisimple Lie algebra. �

4.3. Weak topology and uniqueness. In view of Theorem 4.1 it is natural to
address the question whether the notion of convergence of moments considered
there could be replaced by some more probabilistic notion of convergence.

The notion of convergence in moments is very effective in the framework of
bounded operators, as can be seen for example in Voiculescu’s free probability
theory [VDN92]. Indeed, the convergence in moments fully determines the von
Neumann algebra generated by the limiting operator, and in the commutative case
the moments of a bounded random variable determine its distribution by the Stone–
Weierstrass theorem.

Unfortunately, if the random variables under consideration are not bounded, then
their moments might not be finite; even if the latter case holds, then in general the
moments do not determine the distribution of a random variable. Therefore it would
be desirable to use some more refined description of the joint distribution of random
variables. In the context of classical probability theory such a description is given
by an appropriate probability measure; unfortunately, it is not clear what would
be a good notion of distribution of unbounded operators in the non-commutative
case. Some attempts to define weak convergence of the joint distribution in the
context of W �–probability spaces have been made in very specific examples (see
[Mey93] and the references therein). Unfortunately, it is not clear to us how one
can adapt these definitions in our setting. A promising approach to this problem
via Gromov-Hausdorff distance was presented by Rieffel [Rie04]; however for the
moment it is not clear if this method can be succesfully used for our purposes.

To summarize the above discussion: we have no candidate for some kind of
convergence which would replace the convergence in moments in point (2) of The-
orem 4.1 since we deal here with a joint distribution of a family of non-commuting
random variables.

Nevertheless, in point (1) of Theorem 4.1 we deal with classical random variables.
Therefore it makes sense to consider convergence in some other sense, such as
weak convergence of probability measures. Unfortunately, in general there is no
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connection between convergence in moments and weak convergence of probability
measures. In particular, in order for convergence of measures in moments to imply
their weak convergence we need to assume, for example, that the limit measure is
uniquely determined by its moments.

It seems to be hard to incorporate the weak convergence of probability measures
to condition (1) and preserve the equivalence of conditions (1) and (2). Therefore
our strategy will be to keep Theorem 4.1 unchanged and in the study of its ap-
plications to pay attention to the weak convergence of probability measures (e.g.
Theorem 5.1, item (2) and Theorem 5.3, item (2)).

5. Applications of the main theorem

5.1. Restriction of representations and tensor product of representations.
In this section we investigate a few remarkable consequences of Theorem 4.1.

Theorem 5.1. Let G ⊂ G′ be Lie groups and g ⊂ g′ be the corresponding Lie
algebras, let (εn) be a sequence of real numbers which converges to zero. Let (ρ′n)
be a sequence of representations of g′; by λ′

n and λn we denote the random highest
weight corresponding to representations ρ′n and ρ′n|g, respectively.

(1) Assume that εnλ′
n converges in moments to the distribution of a G′-invari-

ant random vector A with values in g′. Then the sequence εnλn converges in
moments towards the G-invariant random vector Πg(A), where Πg : g′ → g

is the orthogonal projection.
(2) Assume that εnλ′

n converges weakly to the distribution of a G′-invariant
random vector A with values in g′. Then the sequence εnλn converges weakly
towards the G-invariant random vector Πg(A).

Proof. Notice that the non-commutative random vector ρ′n|g is a projection of the
non-commutative random vector ρ′n onto g. It follows that the random matrix
which is the entrywise limit of εnρ′n|g is a projection of A to g. Theorem 4.1 can
be applied twice: for the sequence (ρ′n) and for the sequence (ρ′n|g), which finishes
the proof of part (1).

In order to prove (2) it is enough to show that for every ε > 0 and every
subsequence εk(n)λk(n) we can chose a subsequence εk(l(n))λk(l(n)) which converges
weakly to some limit distribution with the property that its variation distance from
the distribution of Πg(A) is smaller than ε.

Let ε > 0 and a subsequence εk(n)λk(n) be fixed. For simplicity, in the follow-
ing instead of εk(n)λk(n) we shall consider just the sequence εnλn. We can find a
sequence of representations (ρ̃′n) for which the corresponding rescaled random high-
est weights εnλ̃′

n have a common compact support and the total variation distance
between the distribution of εnλ′

n and εnλ̃′
n is smaller than ε (such a sequence ρ̃′n

can be constructed by truncating the distribution of εnλ̃′
n to some sufficiently large

compact set).
By a compactness argument we can select a subsequence εl(n)λ̃

′
l(n) which con-

verges weakly (hence in moments) to some limit; let Ã be a G-invariant random
vector in g� with this distribution of eigenvalues. The total variation distance
between the distribution of Ã and A is bounded by ε.

The first part of the theorem can be applied to the subsequence of representa-
tions εl(n)ρ̃l(n); it follows that the highest weights εl(n)λ̃l(n) (corresponding to the
restrictions of ρ̃l(n) to g) converge in moments to the distribution of the eigenvalues
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of Πg(Ã). Since the random weights have a common compact support the conver-
gence holds also in the weak sense. We finish the proof by observing that the total
variation distance between the distributions of Πg(Ã) and Πg(A) is smaller than
ε. �

In the case of the inclusion of the groups U(d) ⊆ U(d′) for d < d′ the above
theorem takes the following concrete form:

Corollary 5.2. Let d < d′ be positive integers and let (εn) be a sequence of real
numbers which converges to zero. Let A = (Aij)1≤i,j≤d′ be a Hermitian U(d)-
invariant random matrix and let ρn be a sequence of representations of U(d′) with
the property that the distribution of εnλ′

n converges to the joint distribution of eigen-
values of A, where λ′

n ∈ Zd′ is a random weight associated to ρn.
Then the distribution of εnλn converges to the joint distribution of eigenvalues

of the corner (Aij)1≤i,j≤d, where λn ∈ Zd is a random weight associated to the
restriction εnρn|ud

.

Observe that in the above result we used Remark 3.2 in order to work with
Hermitian random matrices. A similar concrete interpretation in the case of unitary
groups is also possible for the other results presented in this section.

We leave to the reader to investigate the other such simple inclusions: of orthog-
onal groups O(d) ⊂ O(d′) and of symplectic groups Sp(d) ⊂ Sp(d′).

Theorem 5.3. Let (εn) be a sequence of real numbers which converges to zero,
let (ρ(1)

n ), (ρ(2)
n ) be two sequences of representations of g and let λ

(1)
n and λ

(2)
n be

the corresponding sequences of random highest weights. Furthermore, let λn be the
sequence of random highest weights corresponding to the tensor products ρ

(1)
n ⊗ρ

(2)
n .

Let A(1), A(2) be independent G-invariant random matrices in g�.

(1) If for each i ∈ {1, 2} the sequence εnλ
(i)
n converges in moments to the

distribution of eigenvalues of A(i), then εnλn converges in moments to the
distribution of eigenvalues of A(1) + A(2).

(2) If for each i ∈ {1, 2} the sequence εnλ
(i)
n converges weakly to the distribution

of eigenvalues of A(i), then εnλn converges weakly to the distribution of
eigenvalues of A(1) + A(2).

Proof. Let ρ
(3)
n := ρ

(1)
n ⊗ ρ

(2)
n . Then

(5.1) ρ(3)
n (x) = ρ(1)

n (x) ⊗ 1 + 1 ⊗ ρ(2)
n (x).

It follows that εnρ
(3)
n viewed as a non-commutative random vector is a sum of two

non-commutative random vectors:
(
εnρ

(1)
n (x)

)
⊗ 1 and 1 ⊗

(
εnρ

(2)
n (x)

)
. Theorem

4.1 implies that the first summand converges in moments to A(1) and the second
summand converges in moments to A(2). The coordinates of the first vector (viewed
as non-commutative random variables) commute with the coordinates of the second
vector; since we consider them with respect to a state (i.e. the normalized trace)
which is a tensor product of the original states (i.e. normalized traces), it follows
that their sum converges to the sum of the independent random matrices, which
finishes the proof of part (1).

Part (2) follows from part (1) in a similar way as in Theorem 5.1. �
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5.2. Central limit theorem. The following theorem was already proved by Ku-
perberg [Kup02] in a slightly different setting. We include this theorem here because
we believe that the proof in this framework (using Theorem 4.1) is new.

Theorem 5.4. Let G be a Lie group and let ρ be its representation. We define
c ∈ g� given by c(x) = tr ρ(x).

Let λn be the random highest weight corresponding to the representation ρ⊗n.
Then the sequence

(5.2)
1√
n

[
λn − cn

]
converges (both in moments and weakly) to the distribution of eigenvalues of a
certain centered Gaussian random matrix in g�.

The covariance of the above Gaussian random matrix is given by∫
g�

λ(x) λ(y)dµ(λ) = tr ρ(x)ρ(y)

for any x, y ∈ g.

Proof. Similarly as in Eq. (5.1) we have that

ρ⊗n(x) = ρ(x) ⊗ 1 ⊗ · · · + 1 ⊗ ρ(x) ⊗ 1 ⊗ · · · + · · · ,

regarded as a non-commutative random variable, is a sum of n commuting sum-
mands. Therefore the non-commutative central limit theorem of Giri and von
Waldenfels [GvW78] can be applied. It follows that the distribution of the non-
commutative random vector 1√

n

[
ρ⊗n−cn

]
converges in moments to the distribution

of a certain centered Gaussian random variable X, which takes values in g�. We
apply Theorem 4.1; it follows that the distribution of the random weight (5.2)
converges in moments to the distribution of the eigenvalues of X.

Let ‖ · ‖ be the norm on g� associated to any G-invariant scalar product. The
distribution of X is multidimensional Gaussian. Therefore there exists a constant
d > 0 such that the tail estimate

(5.3) P (‖X‖ > t) < e−dt2

holds true for sufficiently large values of t. For any element of g� its norm is
equal to the norm of the element of h� corresponding to its eigenvalues; it follows
that the estimate (5.3) remains true if the random variable X is replaced by its
eigenvalues. The estimate (5.3) shows therefore that the even moments of the
eigenvalue distribution of X are dominated by the even moments of a Gaussian
distribution.

This implies that E(e‖X‖) < ∞ and by Corollary 2.2 and Theorem 2.1 of [DLY02]
it follows that the distribution of eigenvalues of X is uniquely determined by its
moments. It follows by a standard compactness argument that the distribution of
the random weights (5.2) converges weakly to the distribution of the eigenvalues of
X. �

Often we have some additional information about the considered Lie group G
which restricts the number of G–invariant Gaussian measures on g�. In the case
of G = U(d) it is convenient to consider a centered Hermitian Gaussian random
matrix g = (gij)1≤i,j≤d defined by the convariance

Egijgkl = 0, Egijgkl = δilδjk;
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this kind of random matrix (and the corresponding measure on the space of d × d
Hermitian matrices) is called a Gaussian Unitary Ensemble (GUE) and plays an
important role in random matrix theory. For any v ≥ 0 we define GUEv as the
distribution of a random matrix

g − tr g + x,

where x is an independent centered Gaussian variable with the variance v.
Under the isomorphism from Remark 3.2, GUEv becomes a measure on the Lie

algebra u(d) and it is not very difficult to check that (except for degenerate cases)
every U(d)–invariant Gaussian measure (up to dilation by some number) is of this
form. In particular, we get the following result.

Corollary 5.5. Let ρ be a representation of U(d). There exist constants c1, c2 with
the property that if λn = (λn,1, . . . , λn,d) is a random weight associated to ρ⊗n, then
the joint distribution of the components of the vector

c1√
n

(λn − nc2)

converges to the joint distribution of the eigenvalues of the GUEv random matrix.

5.3. Toy example: Representations of SO(3) and SU(2). The above results
in the simplest non-trivial case of G = SO(3) should not be very surprising from
the viewpoint of quantum mechanics. Each quantum-mechanical system in three-
dimensional space can be viewed as a (possibly reducible) representation of SO(3)
(or its universal cover Spin(3) = SU(2)) on some Hilbert space V . The irreducible
components of this representation have a nice physical interpretation as physical
states with a well-defined length |J | of the angular momentum. For simplicity, we
assume that V itself is irreducible; hence V is finite-dimensional. The information
concerning the state of the physical system is encoded by a state φ on the algebra
generated by observables. We are interested in the situation when the physical
state of the system is SO(3)-invariant; it follows that φ is the normalized trace on
End(V ).

The physicist’s question pertaining to the distribution of a component Jz of the
angular momentum can be reformulated in the language of mathematics as a ques-
tion of the decomposition into irreducible components of the restriction V ↓SO(3)

SO(2)

of the representation V to a subgroup SO(2) (or, more generally, restriction of the
representation V of Spin(3) = SU(2) to its subgroup Spin(2) = U(1)); namely it is
the uniform measure on the set of integers (or half-integers)

(5.4)
{
− |J |,−|J | + 1, . . . , |J | − 1, |J |

}
(for simplicity we use the system of units in which Planck’s constant � = 1).

On the other side it is well known that when the size of our system becomes
macroscopic, then quantum mechanics may be approximated by classical mechanics,
where the angular momentum 
J = (Jx, Jy, Jz) is just a usual vector consisting of
numbers. Our assumptions on irreducibility and SO(3)-invariance imply that in
the classical limit 
J is a random vector with a uniform distribution on a sphere
of a fixed length |J |. The physicist’s question concerning the distribution of a
component Jz of the angular momentum in this context is answered by the theorem
of Archimedes; namely it is the uniform distribution on the interval [−|J |, |J |]. In
the limit |J | → ∞, after appropriate rescaling, the uniform measure on the set (5.4)
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indeed converges to the uniform measure on the set [−|J |, |J |]; hence the answer
given by classical mechanics is indeed the limit of the answer given by quantum
mechanics.

It is also a consequence of this article: indeed we view the representation ρ of
the Lie algebra so(3) as an element of

(
so(3)

)� ⊗ End(V ); in our current case this
takes the concrete form of a matrix

(5.5) J =

⎡
⎣ 0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0

⎤
⎦

(the form of this matrix depends on the particular choice of the identification of(
so(3)

)� with certain 3 × 3 matrices). Theorem 4.1 states that asymptotically the
matrix (5.5) behaves like a random 3 × 3 antisymmetric matrix with eigenvalues
0, |J |,−|J |.

We leave the analysis of the central limit theorem in this case to the reader.

Acknowledgments

The authors thank the referee for his feedback and suggestions of improvement
to the paper.

References

[Bia95] Philippe Biane. Representations of unitary groups and free convolution. Publ. Res.
Inst. Math. Sci., 31(1):63–79, 1995. MR1317523 (96c:22021)

[Bia98] Philippe Biane. Representations of symmetric groups and free probability. Adv. Math.,
138(1):126–181, 1998. MR1644993 (2001b:05225)
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