CLASSIFICATION OF WEIGHTED DUAL GRAPHS
WITH ONLY COMPLETE INTERSECTION SINGULARITIES STRUCTURES

FAN CHUNG, YI-JING XU, AND STEPHEN S.-T. YAU

Dedicated to Henry Laufer on the occasion of his 65th birthday

Abstract. Let p be normal singularity of the 2-dimensional Stein space V. Let $\pi: M \to V$ be a minimal good resolution of V, such that the irreducible components A_i of $A = \pi^{-1}(p)$ are nonsingular and have only normal crossings. Associated to A is weighted dual graph Γ which, along with the genera of the A_i, fully describes the topology and differentiable structure of A and the topological and differentiable nature of the embedding of A in M. In this paper we give the complete classification of weighted dual graphs which have only complete intersection singularities but no hypersurface singularities associated to them. We also give the complete classification of weighted dual graphs which have only complete intersection singularities associated with them.

1. Introduction

Let p be a normal singularity of the 2-dimensional Stein space V. Let $\pi: M \to V$ be a resolution of V such that the irreducible components A_i, $1 \leq i \leq n$, of $A = \pi^{-1}(p)$ are nonsingular and have only normal crossings. Associated to A is a weighted dual graph Γ (e.g., see [HNK] or [La1]) which, along with the genera of the A_i, fully describes the topology and differentiable structure of A and the topological and differentiable nature of the embedding of A in M. One of the famous important questions in normal two-dimensional singularities asks: What conditions are imposed on the abstract topology of (V, p) by the complete intersection hypothesis? Recall a theorem of Milnor [Mi, Theorem 2, p. 18] that essentially says that any isolated singularity is a cone over its link L which is the intersection of V with a small sphere centered at p. L is a compact real 3-manifold whose oriented homeomorphism type determines and is determined by the weighted dual graph Γ of a canonically determined resolution (cf. [Ne]). So, we may equivalently ask: What conditions will the existence of a complete intersection representative (V, p) put on a weighted dual graph Γ? A complete intersection singularity (V, p) is Gorenstein [Ba, Gr-Ri]. So there exists an integral cycle K on Γ which satisfies the adjunction formula [Sc]. The purpose of this paper is to give a complete classification of those weighted dual graphs which have only complete intersection singularities associated to them.

Received by the editors March 2, 2007.
2000 Mathematics Subject Classification. Primary 32S25, 58K65, 14B05.
The third author’s research was partially supported by an NSF grant.

©2009 American Mathematical Society
M. Artin has studied the rational singularities (those for which $R^1\pi_*(\mathcal{O}) = 0$). It is well known that rational complete intersection singularities are hypersurfaces (cf. Theorem 4.3 below). Artin has shown that all hypersurface rational singularities have multiplicities two and the graphs associated with those singularities are one of the graphs A_k, $k \geq 1$; D_k, $k \geq 4$; E_6, E_7 and E_8 which arise in the classification of simple Lie groups. In [La4], Laufer examines a class of elliptic singularities which satisfy a minimality condition. These minimally elliptic singularities have a theory much like the theory for rational singularities. Laufer [La4] proved that p is minimally elliptic if and only if $H^1(M, \mathcal{O}) = \mathbb{C}$ and $\mathcal{O}_{V,p}$ is a Gorenstein ring. Let Z be the fundamental cycle [Ar, p. 132] of the minimal resolution of a minimally elliptic singularity. If $Z^2 = -1$ or -2, then p is a double point [La4]. Laufer [La4] proved that if $Z^2 = -3$, then p is a hypersurface singularity with multiplicity 3. In fact he shows that for a minimally elliptic singularity $Z^2 \geq -4$ if and only if p is a complete intersection singularity.

Now let p be an arbitrary singularity in the Stein normal 2-dimensional space V having p as its only singularity. Let Γ denote the weighted dual graph of the exceptional set of the minimal good resolution $\pi: M \rightarrow V$. In [La3], Laufer developed a deformation theory preserving Γ. This theory allows him to introduce the notion of a property of the associated singularity holding generically for Γ. Now suppose that Γ is a weighted dual graph which does not correspond to a rational double point or to a minimally elliptic singularity. Then a deep theorem of Laufer [La4] asserts that the corresponding singularity is generically non-Gorenstein. In particular, it is generically not a complete intersection. As a consequence we can characterize those weighted dual graphs which have only complete intersection singularities associated to them. These are precisely rational double point graphs and minimally elliptic graphs with $Z^2 = -1$, -2, -3 or -4. Notice that rational double point graphs and minimally elliptic graphs with $Z^2 = -1$, -2 or -3 are precisely those graphs which have only hypersurface singularities associated with them. Laufer [La4] has completely classified minimally elliptic graphs with $Z^2 = -1$, -2, or -3. Therefore in order to classify those weighted dual graphs which have only complete intersection singularities associated with them, we only need to classify all the minimally elliptic graphs with $Z^2 = -4$. This will be done in section 6. Incidentally, these graphs are precisely the graphs with complete intersection singularities associated with them but no hypersurface singularities associated with them. We summarize our results in the following theorems.

Theorem A. The complete classification of weighted dual graphs which have only complete intersection singularities but no hypersurface singularities associated to them consists of the minimally elliptic singularity graphs with $Z^2 = -4$ which are listed in section 7.

Theorem B. The complete classification of weighted dual graphs which have only complete intersection singularities associated with them consists of rational double point graphs listed in [Ar], minimal elliptic hypersurface singularity graphs listed in [La4] and the minimal elliptic complete intersection singularity graphs listed in section 7.

Our strategy of classification of all minimally elliptic singularity graphs with $Z^2 = -4$ is quite simple. We first introduce the concept of an effective component,
which is an irreducible component A_* of the exceptional set such that $A_* \cdot Z < 0$. It turns out that there are at most 4 effective components with known fundamental coefficients (Proposition 6.2). Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Suppose A_* is an effective component of Γ. Let Γ_1 be any connected component of Γ which intersect with A_*. Then Γ_1 is necessarily one of the rational double point graphs appearing in Theorem 4.2. Let Z_1 be the fundamental cycle of Γ_1. Then $A_* \cdot Z_1 \leq 2$. If $A_* \cdot Z_1 = 2$, then $\Gamma = A_* \cup \Gamma_1$ and $Z = A_* + Z_1$; moreover for any $A_j \in \Gamma_1$, $A_j \cdot A_k > 0$ if and only if $A_j \cdot Z_1 < 0$ (Proposition 5.3). In order to find out how one can add A_* to the rational double point graphs, we use Theorem 3.5 and the adjunction formula (2.3).

2. Preliminaries

Let $\pi: M \to V$ be a resolution of the normal two-dimensional Stein space V. We assume that p is the only singularity of V. Let $\pi^{-1}(p) = A = \bigcup A_i$, $1 \leq i \leq n$, be the decomposition of the exceptional set A into irreducible components.

A cycle $D = \sum d_i A_i$, $1 \leq i \leq n$ is an integral combination of the A_i, with d_i an integer. There is a natural partial ordering, denoted by $<$, between cycles defined by comparing the coefficients. We let $\text{supp} D = \bigcup A_i$, $d_i \neq 0$, denote the support of D.

Let \mathcal{O} be the sheaf of germs of holomorphic functions on M. Let $\mathcal{O}(-D)$ be the sheaf of germs of holomorphic functions on M which vanish to order d_i on A_i. Let \mathcal{O}_D denote $\mathcal{O}/\mathcal{O}(-D)$. Define

$$\chi(D) := \dim H^0(M, \mathcal{O}_D) - \dim H^1(M, \mathcal{O}_D).$$

The Riemann-Roch theorem [Se, Proposition IV.4, p. 75] says that

$$\chi(D) = -\frac{1}{2}(D^2 + D \cdot K),$$

where K is the canonical divisor on M. $D \cdot K$ may be defined as follows. Let ω be a meromorphic 2-form on M. Let $\langle \omega \rangle$ be the divisor of ω. Then $D \cdot K = D \cdot \langle \omega \rangle$ and this number is independent of the choice of ω. In fact, let g_i be the geometric genus of A_i, i.e., the genus of the desingularization of A_i. Then the adjunction formula [Se, Proposition IV, 5, p. 75] says that

$$A_i \cdot K = -A_i^2 + 2g_i - 2 + 2\delta_i,$$

where δ_i is the “number” of nodes and cusps on A_i. Each singular point on A_i other than a node or cusp counts as at least two nodes. It follows immediately from (2.2) that if B and C are cycles, then

$$\chi(B + C) = \chi(B) + \chi(C) - B \cdot C.$$

Definition 2.1. Associated to π is a unique fundamental cycle Z [Ar, pp. 131-132] such that $Z > 0$, $A_i \cdot Z \leq 0$ for all A_i and such that Z is minimal with respect to those two properties. Z may be computed from the intersection as follows via a computation sequence for Z in the sense of Laufer [La2, Proposition 4.1, p. 607]:

$$Z_0 = 0, Z_1 = A_{i_1}, Z_2 = Z_1 + A_{i_2}, \ldots, Z_j = Z_{j-1} + A_{i_j}, \ldots,$$

$$Z_\ell = Z_{\ell-1} + A_{i_\ell} = Z,$$

where A_{i_1} is arbitrary and $A_{i_j} \cdot Z_{j-1} > 0$, $1 < j \leq \ell$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 3.5. Let $\pi : M \to V$ be the minimal resolution of the normal two-dimensional variety V with one singular point p. Let Z be the fundamental cycle on the exceptional set $A = \pi^{-1}(p)$. Then the following are equivalent:

1. Z is a minimally elliptic cycle,
2. $A_i \cdot Z = -A_i \cdot K$ for all irreducible components A_i in A,
3. $\chi(Z) = 0$ and any connected proper subvariety of A is the exceptional set for a rational singularity.
In [La4], Laufer introduced the notion of minimally elliptic singularity.

Definition 3.6. Let p be a normal two-dimensional singularity. p is minimally elliptic if the minimal resolution $\pi : M \to V$ of a neighborhood of p satisfies one of the conditions of Theorem 3.5.

Proposition 3.7 ([La4]). Let $\pi : M \to V$ and $\pi' : M' \to V$ be the minimal resolution and minimal good resolution respectively for a minimally elliptic singularity p. Then $\pi = \pi'$ and all the A_i are rational curves except for the following cases:

1. A is an elliptic curve. π is a minimal good resolution.
2. A is a rational curve with a node singularity.
3. A is a rational curve with a cusp singularity.
4. A is two nonsingular rational curves which have first order tangential contact at one point.
5. A is three nonsingular rational curves all meeting transversely at the same point.

In case (2), the weighted dual graph of the minimal good resolution is

$$
-w_1 \bullet \bullet -1 \quad \text{with } w_1 \geq 5.
$$

In cases (3)–(5), π' has the following weighted dual graph:

$$
-w_1 \bullet \bullet -w_2 \quad \text{with } w_1 \geq 2, 1 \leq i \leq 3.
$$

Minimally elliptic singularities can be characterized without explicit use of the resolution as follows because $H^1(M, \mathcal{O})$ can be described in terms of V [La2, Theorem 3.4, p. 604].

Theorem 3.8 ([La4]). Let V be a Stein normal two-dimensional space with p as its only singularity. Let $\pi : M \to V$ be a resolution of V. Then p is a minimally elliptic singularity if and only if $H^1(M, \mathcal{O}) = \mathbb{C}$ and $\mathcal{O}_{V,p}$ is a Gorenstein ring.

4. **Weighted dual graphs admitting no complete intersection singularities structures**

In this section, we shall show that there is a large class of weighted dual graphs not admitting any complete intersection singularity structure. Let (V, p) be a normal 2-dimensional singularity. Let $\pi : M \to V$ be the minimal resolution. Let Z be the fundamental cycle.

Definition 4.1. p is a rational singularity if $\chi(Z) = 1$.

If p is a rational singularity, then π is also a minimal good resolution, i.e., exceptional set with nonsingular A_i and normal crossings. Moreover each A_i is a rational curve [Ar].
Theorem 4.2. If \(p \) is a hypersurface rational singularity, then \(p \) is a rational double point. Moreover the set of weighted dual graphs of hypersurface rational singularities consists of the following graphs:

1. \(A_n, n \geq 1 \)
2. \(D_n, n \geq 4 \)
3. \(E_6 \)
4. \(E_7 \)
5. \(E_8 \)

\[
\begin{array}{ccc}
(1) & A_n, n \geq 1 & \begin{array}{cc} -2 & -2 \\ -2 & -2 \\ -2 \end{array} & Z = 1 \ 1 \ldots 1 \\
(2) & D_n, n \geq 4 & \begin{array}{cc} 2 \\ -2 & -2 & -2 & -2 \\ -2 \\ -2 \\ -2 \end{array} & Z = 1 \ 2 \ 1 \ldots 1 \\
(3) & E_6 & \begin{array}{ccc} -2 & -2 & -2 \\ -2 & -2 & -2 \\ -2 & -2 & -2 \end{array} & Z = 1 \ 2 \ 3 \ 2 \ 1 \\
(4) & E_7 & \begin{array}{cc} -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \end{array} & Z = 2 \ 3 \ 4 \ 3 \ 2 \ 1 \\
(5) & E_8 & \begin{array}{cc} -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \end{array} & Z = 2 \ 4 \ 6 \ 5 \ 4 \ 3 \ 2 \\
\end{array}
\]

Theorem 4.3. Let \(\Gamma \) be a weighted dual graph of a rational singularity. If \(\Gamma \) is not one of the five types in Theorem 4.2, then \(\Gamma \) does not admit any Gorenstein singularity structure; in particular, \(\Gamma \) does not admit any complete intersection singularity structure.

Proof. Since in the definition of a rational singularity, \(\chi(Z) \) can be computed from the weighted dual graph, any singularity associated to \(\Gamma \) is a rational singularity. To prove the theorem, we only need to prove that if \(p \) is a Gorenstein rational singularity, then its graph is one of the five types in Theorem 4.2. Suppose \((V, p) \) is a Gorenstein rational singularity. Then \(\dim H^1(M, \mathcal{O}) = 0 \) \([Ar]\). By a result of Laufer \([La2]\), \(\dim H^1(M, \mathcal{O}) = \dim H^0(M - A, \Omega^2)/H^0(M, \Omega^2) \) where \(\Omega^2 \) is the sheaf of germs of holomorphic 2-forms on \(M \). Therefore there exists an effective canonical divisor \(K = \sum k_i A_i, k_i \) a nonnegative integer, on \(M \). Since \(M \) is a minimal resolution, by the adjunction formula, we have

\[
(A) \quad A_i \cdot K \geq 0 \text{ for all } A_i \subseteq A.
\]

It follows that

\[
(B) \quad K^2 = \sum k_i (A_i \cdot K) \geq 0.
\]

On the other hand, the intersection matrix is a negative definition \([Gr]\). Therefore \(K^2 \leq 0 \). This together with (A) implies \(K^2 = 0 \). The negative definiteness of the intersection matrix implies \(K = 0 \). The adjunction formula tells us that \(A_i^2 = -2 \) for all \(A_i \). Then as an easy exercise, one can show that the weighted dual graph of the exceptional set is one of the five types listed in Theorem 4.2. \(\Box \)

5. Characterization of Weighted Dual Graphs Admitting Only Complete Intersection Singularities Structures

In this section we shall give a characterization of weighted dual graphs admitting only hypersurface singularities structures. We shall also give a characterization of weighted dual graphs admitting only complete intersection singularities structures.
It turns out that the latter list minus the former list corresponds to the list of weighted dual graphs which admit only complete intersection singularities structures but not hypersurface singularities structures.

Theorem 5.1 ([La4]). Let p be a minimally elliptic singularity. Let $\pi : M \to V$ be a resolution of a Stein neighborhood V of p with p as its only singular point. Let m be the maximal ideal in $O_{V,p}$. Let Z be the fundamental cycle on $A = \pi^{-1}(p)$.

1. If $Z^2 \leq -2$, then $O(-Z) = mO$ on A.
2. If $Z^2 = -1$, and π is the minimal resolution or the minimal resolution with nonsingular A_i and normal crossings, then $O(-Z)/mO$ is the structure sheaf for an embedded point.
3. If $Z^2 = -1$ or -2, then p is a double point.
4. If $Z^2 = -3$, then for all integers $n \geq 1$, $m^n \approx H^0(A, O(-nZ))$ and $\dim m^n/m^{n+1} = -nZ^2$.
5. If $-3 \leq Z^2 \leq -1$, then p is a hypersurface singularity.
6. If $Z^2 = -4$, then p is a complete intersection and in fact a tangential complete intersection.
7. If $Z^2 \leq -5$, then p is not a complete intersection.

Let p be a normal two-dimensional singularity. Choose the minimal resolution of p having nonsingular A_i and normal crossings. Let Γ denote the weighted dual graph along with the genera. See [HNK] or [La1] for a more detailed description of Γ. Γ may be described abstractly. Given Γ, we say that p is a singularity associated to Γ. As in [La1, Theorem 6.20, p. 132] we may choose a suitably large infinitesimal neighborhood B of the exceptional set such that B depends only on Γ and determines p. We can deform B in such a way that Γ is preserved. See [La3] for the general theory in this situation.

Definition 5.2. Let Γ be a weighted dual graph, including genera for the vertices. A property is generically true for an associated singularity of Γ if given any normal two-dimensional singularity p having Γ as the weighted dual graph of its minimal resolution with nonsingular A_i and normal crossings, then the property is true for all singularities near p and off a proper subvariety of the parameter space of a complete deformation of a suitable large infinitesimal neighborhood B of the exceptional set for p.

The following deep theorem is due to Laufer.

Theorem 5.3 ([La4]). All rational double points and all minimally elliptic singularities are Gorenstein. Let Γ be a weighted dual graph, including genera for the vertices, associated to a minimal resolution with nonsingular A_i and normal crossings of a singularity p. Suppose that p is not a rational double point or minimally elliptic. Then an associated singularity of Γ is generically non-Gorenstein.

Now we are ready to give a characterization of weighted dual graphs admitting only complete intersection singularities structures (respectively hypersurface singularities structures). Recall that rational and minimally elliptic singularities have topological definitions; i.e., they can be defined in terms of their weighted dual graphs.
Theorem 5.4.

(1) The weighted dual graphs which have only hypersurface singularities associated to them are precisely those graphs coming from rational double points, minimally elliptic double points \((Z^2 = -1, \text{ or } -2)\), or minimally elliptic triple points \((Z^2 = -3)\).

(2) The weighted dual graphs which have only complete intersection singularities associated to them are precisely those graphs coming from rational double points, minimally elliptic double points \((Z^2 = -1, \text{ or } -2)\), minimally elliptic triple points \((Z^2 = -3)\), or minimally elliptic quadruple points \((Z^2 = -4)\).

(3) The weighted dual graphs which have only complete intersection but not hypersurface singularities associated to them are precisely those graphs coming from minimally elliptic quadruple points \((Z^2 = -4)\).

Proof. We only need to observe that hypersurface or complete intersection singularities are Gorenstein. Theorem 5.4 follows directly from Theorem 5.1 and Theorem 5.3.

\[\square\]

6. Classification of weighted dual graphs with only complete intersection but not hypersurface singularities structures

By Theorem 5.4, the classification of weighted dual graphs with only complete intersection but not hypersurface singularity structure is equal to the classification of minimally elliptic singularity weighted dual graphs with \(Z^2 = -4\).

Definition 6.1. Let \((V, p)\) be a germ of weakly elliptic singularity. Let \(\pi: M \rightarrow V\) be the minimal resolution with \(\pi^{-1}(p) = A = \bigcup A_i, 1 \leq i \leq n\) the irreducible decomposition of the exceptional set. Let \(Z\) be the fundamental cycle. The set of effective components \(\{A_1, \ldots, A_n\}\) is the set \(\{A_i; A_i \cdot Z < 0\}\).

Proposition 6.2. Let \((V, p)\) be a germ of minimally elliptic singularity. Let \(\pi: M \rightarrow V\) be the minimal resolution of \(p\). If \(\pi\) is also a minimal good resolution and \(Z^2 = -4\), then the set of effective components \(\{A_1, \ldots, A_m\}\) must be one of the following:

1. \(\{A_1\}, A_{21}^2 = -3, z_1 = 4\)
2. \(\{A_1\}, A_{21}^2 = -4, z_1 = 2\)
3. \(\{A_1\}, A_{21}^2 = -6, z_1 = 1\)
4. \(\{A_1, A_2\}, A_{11}^2 = A_{22}^2 = -3, z_1 = z_2 = 2\)
5. \(\{A_1, A_2\}, A_{11}^2 = A_{22}^2 = -3, z_1 = 3, z_2 = 1\)
6. \(\{A_1, A_2\}, A_{11}^2 = -3, A_{22}^2 = -4, z_1 = 2, z_2 = 1\)
7. \(\{A_1, A_2\}, A_{11}^2 = A_{22}^2 = -4, z_1 = z_2 = 1\)
8. \(\{A_1, A_2\}, A_{11}^2 = -3, A_{22}^2 = -5, z_1 = z_2 = 1\)
9. \(\{A_1, A_2, A_3\}, A_{21}^2 = A_{22}^2 = A_{33}^2 = -3, z_1 = z_2 = 1, z_3 = 2\)
10. \(\{A_1, A_2, A_3\}, A_{21}^2 = A_{22}^2 = -3, A_{33}^2 = -4, z_1 = z_2 = z_3 = 1\)
11. \(\{A_1, A_2, A_3, A_4\}, A_{11}^2 = -3, z_i = 1, i = 1, 2, 3, 4, \)

where \(A_{si} \neq A_{sj}\) if \(i \neq j\) and \(z_i\) is the coefficient of \(A_{si}\) in \(Z\).
Proof. Let \(\{A_1, \ldots, A_m\} \) be the set of effective components. Then, by Theorem 3.5 we have
\[
-Z^2 = -\sum_{i=1}^{m} z_i(A_i \cdot Z) = -\sum_{i=1}^{m} z_i(A_{s_i} \cdot Z)
= \sum_{i=1}^{m} z_i(A_{s_i} \cdot K).
\]
This implies that \(4 = \sum_{i=1}^{m} z_i(-A_{s_i}^2 + 2) \). By the definition of the effective component, we have \(-A_{s_i}^2 + 2 = A_{s_i} \cdot K = -A_{s_i} \cdot Z > 0 \). Hence we have \(1 \leq m \leq 4 \). If \(m = 1 \), then \(-4 = z_1(A_{s_1}^2 + 2) \) and we are in case (1), case (2) or case (3). If \(m = 2 \), then \(-4 = z_1(A_{s_1}^2 + 2) + z_2(A_{s_2}^2 + 2) \). It follows easily that we are in case (4), case (5), case (6), case (7), or case (8). If \(m = 3 \), then \(-4 = z_1(A_{s_1}^2 + 2) + z_2(A_{s_2}^2 + 2) + z_3(A_{s_3}^2 + 2) \). It is easy to see that we are in case (9) or case (10). If \(m = 4 \), then \(-4 = (A_{s_1}^2 + 2) + (A_{s_2}^2 + 2) + (A_{s_3}^2 + 2) + (A_{s_4}^2 + 2) \). So we are in case (11). \(\square \)

Proposition 6.3. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z \). Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma \). Suppose that \(A_* \) is an effective component of \(\Gamma \), and let \(\{\Gamma_1, \ldots, \Gamma_n\} \) be the set of connected components of \(\Gamma' \) which intersect with \(A_* \). Then \(\Gamma_1, \ldots, \Gamma_n \) are necessarily one of the rational double point graphs appearing in Theorem 4.2. Let \(Z_1, \ldots, Z_n \) be the fundamental cycles of \(\Gamma_1, \ldots, \Gamma_n \) respectively. Then \(A_* \cdot Z_1 \leq 2 \). If \(A_* \cdot Z_1 = 2 \), then \(\Gamma = A_* \cup \Gamma_1 \) and \(Z = A_* + Z_1 \); moreover for any \(A_j \in \Gamma_i \), \(A_j \cdot Z = A_j \cdot (-K) = A_j^2 - 2 \). Hence \(A_j^2 = -2 \). It follows that \(\Gamma_i \) are rational double point graphs.

Since \(\Gamma \) is the graph of a minimally elliptic singularity, we have
\[
0 \leq \chi(A_* + Z_1) = \chi(A_*) + \chi(Z_1) - A_* \cdot Z_1,
\]
which implies
\[
A_* \cdot Z_1 \leq \chi(A_*) + \chi(Z_1) = 2.
\]
Observe that if \(\Gamma \neq A_* \cup \Gamma_1 \) or \(Z > A_* + Z_1 \) then the inequalities in \((6.1)\) and \((6.2)\) are strict inequalities. Hence \(A_* \cdot Z_1 = 1 \). We have proved that if \(A_* \cdot Z_1 = 2 \), then \(\Gamma = A_* \cup \Gamma_1 \) and \(Z = A_* + Z_1 \).

We shall assume from now on that \(A_* \cdot Z_1 = 2 \). Let \(A_1 \in \Gamma_1 \) such that \(A_1 \cdot A_* > 0 \). \(A_1 \cdot Z_1 = 0 \) would imply \(A_1 \cdot (Z_1 + A_*) > 0 \) and hence \(A_1 \cdot Z > 0 \), which is absurd. It follows that \(A_1 \cdot Z_1 < 0 \).

Conversely, if \(A_1 \in \Gamma_1 \) and \(A_1 \cdot Z_1 < 0 \), but \(A_* \cdot A_1 = 0 \), then there is an \(A_2 \in \Gamma_1 \) such that \(A_2 \cdot A_* > 0 \) and \(A_2 \cdot Z_1 < 0 \). Since \(Z_1^2 = -2 \), we have \(A_2 \cdot Z_1 = A_1 \cdot Z_1 = -1 \) and the coefficient of \(A_2 \) in \(Z_1 \) is one. It follows that \(A_2 \) is the only component in \(\Gamma_1 \) which intersects with \(A_* \) and \(A_* \cdot A_2 = 2 \). Observe that \(\chi(A_* + A_2) = 0 \) and \(A_* + A_2 < Z \). This contradicts the fact that \(Z \) is the minimally elliptic cycle. So we have shown that \(A_* \cdot A_1 > 0 \) if and only if \(A_1 \cdot Z_1 < 0 \). \(\square \)
Notation. From now on, we shall denote a nonsingular rational curve with -2 weight.

Corollary 6.4. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ_1 be a rational double point subgraph of Γ with fundamental cycle Z_1 in Proposition 6.3. Let A_* be an effective component attaching on Γ_1. Suppose that $A_* \cdot Z_1 = 2$. Then one of the following cases holds.

1. Γ is of the following form:

$$
A_\bullet \quad \text{with } r \text{ vertices and } r + 1 \text{ edges.}
$$

\bullet is a nonsingular rational curve with weight -2.

2. Γ_1 is either D_n, E_6, E_7 or E_8. There exists a unique A_1 in Γ_1 such that $A_1 \cdot A_* = 1$ and $A_1 \cdot Z_1 < 0$. The coefficient of A_1 in Z_1 is 2. $\Gamma = A_* \cup \Gamma_1$ and $Z = A_* + Z_1$. Γ is one of the following forms.

Proof. This follows from Proposition 6.3 and Theorem 4.2.

Definition 6.5. Let A_1 be an irreducible component in a weighted dual graph Γ. The degree of A_1 is defined to be the number of distinct irreducible components in Γ intersecting with A_1 positively.

Lemma 6.6. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ_1 be a subgraph of Γ in Proposition 6.3 with fundamental cycle Z_1. Let A_* be an effective component attaching on Γ_1. Suppose
that the coefficient z_s of A_s in Z is one. Then either A_s has degree one or Γ is of the following form:

\[
\begin{array}{c}
A_s \quad \cdots \quad \cdots \\
A_2 \quad \cdots \quad \cdots \\
A_4 \quad \cdots \quad \cdots \\
A_n
\end{array}
\]

where $n \geq 1$ and Γ_1 is \hspace{1em} which denotes \hspace{1em} with r_1 vertices and $r_1 + 1$ edges.

Proof. By Proposition 6.3, $A_s \cdot Z_1$ is either 1 or 2. If $A_s \cdot Z_1 = 2$, then the lemma follows from Corollary 6.4.

From now on, we shall assume that $A_s \cdot Z_1 = 1$. To prove the lemma, we only need to prove that if $\text{deg} A_s > 1$, then Γ must be of the circular form shown as above. If $\text{deg} A_s > 1$, then there exists A_2 not in Γ_1 such that $A_2 \cdot A_s > 0$. Clearly $A_2 \cdot A_s = 1$ by the minimal ellipticity of Γ. We claim that A_2 is connected to Γ_1 via a path in Γ which is disjoint from A_s.

By Theorem 3.4, we can choose a computation sequence of the fundamental cycle Z starting from A_s continuing to Γ_1 and ending at A_2. Now $z_s = 1$, $A_s^2 + 2 = A_s \cdot Z$, and $\text{deg} A_s > 1$ implies that the computation sequence contains A_s only once and the coefficient of A_2 in Z must also be one. Hence the computation sequence must contain A_2 only once. Moreover $A_2^2 + 2 = A_2 \cdot Z$ implies that $\text{deg} A_2 = 2$. Repeating the same argument, we see that for every component in that computation sequence its coefficient in Z is one, its degree is 2 and the computation sequence passes it only once. Therefore Γ must be the form shown in the lemma. \hfill \Box

Remark 6.7. With the same assumption and notation as in Lemma 6.6, so long as the intersection matrix remains negative definite, A_s^2 can be given any value at most -2 and Z remains unchanged and Γ still corresponds to a minimally elliptic singularity.

Proposition 6.8. Let Γ be the minimal resolution graph of minimally elliptic singularity with fundamental cycle Z. Suppose that there is no effective component with coefficient in Z strictly greater than 1. Set all A_i^2 of effective components of Γ but one to -2 and the remaining weight to -3. Then the new weighted dual graph $\tilde{\Gamma}$, which coincides with Γ except for the weights, is obtained from a rational double point weighted dual graph by the addition of one additional vertex A_s. In fact $\tilde{\Gamma}$ corresponds to a minimally elliptic double point with $Z^2 = -1$.

Proof. Since $A_s \cdot Z = -A_s \cdot K = A_s^2 + 2$, after setting all A_i^2 of effective components of Γ but one to -2 and the remaining weight to -3, it is still true that $A_i \cdot Z \leq 0$ for all i and that $A_i Z < 0$ for one A_i. Therefore Z is also the fundamental cycle for $\tilde{\Gamma}$ and the intersection matrix of $\tilde{\Gamma}$ is still negative definite [Ar, Proposition 2, pp. 130–131]. By Lemma 6.6, Γ is obtained from a rational double point weighted dual graph by the addition of one additional vertex A_s. Clearly $Z_{\tilde{\Gamma}}^2 = -1$. \hfill \Box
Proposition 6.9. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_* be an effective component of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to the A_n graph in case (1) of Theorem 4.2. Suppose also that Γ_1 intersects with A_* but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_* \cdot Z_1 = 1$. If the coefficient z_* of A_* in Z is four and $A^2_* = -3$, then $A_* \cup \Gamma_1$ and the restriction of Z on $A_* \cup \Gamma_1$ must be one of the following forms.

\begin{align*}
(1) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 4 \\ 2 \end{array} \\
(2) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 4 \\ 3 \quad 2 \end{array} \\
(3) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 3 \\ 6 \quad 5 \quad 4 \quad 3 \quad 2 \end{array} \\
(4) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 3 \\ 6 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \end{array} \\
(5) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 2 \\ 4 \quad 4 \quad 2 \end{array} \\
(6) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 2 \\ 4 \quad 4 \quad 0 \quad 4 \quad 2 \end{array} \\
(7) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 2 \\ 4 \quad 6 \quad 4 \quad 8 \quad 6 \quad 4 \quad 2 \end{array} \\
(8) & \quad A_* \quad \quad \quad \quad Z \bigg|_{A_* \cup \Gamma_1} = \begin{array}{c} 2 \\ 4 \quad 6 \quad 8 \quad 4 \quad 8 \quad 6 \quad 4 \quad 2 \end{array}
\end{align*}

Proof. Consider A_* attaching on Γ_1 in the following form:

A_* A_1 A_2 A_m $Z \bigg|_{A_* \cup \Gamma_1} = 4 \quad n_1 \quad n_2 \ldots n_m.$
Since $A_i \cdot Z = A_i \cdot (-K) = A_i^2 + 2 = 0$, $1 \leq i \leq m$, we have the following system of equations:

$$
\begin{align*}
-2n_1 + 4 + n_2 &= 0 \\
-2n_2 + n_1 + n_3 &= 0 \\
&\vdots \\
-2n_{m-1} + n_{m-2} + n_m &= 0 \\
-2n_m + n_{m-1} &= 0
\end{align*}
\Rightarrow \begin{cases}
 n_i = (m - i + 1)n_m & 1 \leq i \leq m \\
 n_m = \frac{4}{m+1}
\end{cases}.
$$

Therefore $m = 1$ or $m = 3$ and we are in case (1) or case (2) respectively.

Consider A_\ast attaching on Γ_1 in the following form:

$$
\begin{array}{c}
A_{n_2} \quad A_{n_1} \quad A \quad Z \\
A_{n_2} \quad A_1 \quad A_2 \quad A_m
\end{array}
= n_m' \cdots n_2' n_1 n_2 \cdots n_m'.
$$

Since $A_i \cdot Z = A_i \cdot (-K) = A_i^2 + 2 = 0$, $1 \leq i \leq m_1$ and similarly $A_j' \cdot Z = 0$ for $2 \leq j \leq m_2'$, we have the following system of equations:

$$
\begin{align*}
-2n_{m_1} + n_{m_1-1} &= 0 \\
-2n_{m_1-1} + n_{m_1-2} + n_{m_1} &= 0 \\
&\vdots \\
-2n_3 + n_2 + n_4 &= 0 \\
-2n_2 + n_1 + n_3 &= 0
\end{align*}
\Rightarrow \begin{cases}
 -2n_{m_2}' + n_{m_2-1}' &= 0 \\
 -2n_{m_2-1} + n_{m_2-2} + n_{m_2}' &= 0 \\
 &\vdots \\
 -2n_5' + n_4' + n_4' &= 0 \\
 -2n_4' + n_3' &= 0
\end{cases}
$$

(6.3)

$$
4 - 2n_1 + n_2 + n_2' = 0
$$

(6.4)

(6.3) implies

$$
\begin{align*}
n_i &= (m_1 - i + 1)n_{m_1} & 1 \leq i \leq m_1, \\
n_j' &= (m_2 - j + 1)n_{m_2}' & 2 \leq j \leq m_2,
\end{align*}
$$

(6.5)

(6.6)

(6.7)

Putting (6.5) and (6.6) into (6.4), we get

$$
0 = 4 - 2m_1n_{m_1} + (m_1 - 1)n_{m_1} + (m_2 - 1)n_{m_2}'
= 4 - (m_1 + 1)n_{m_1} + (m_2 - 1)n_{m_2}' = 0.
$$

(6.8)

(6.7) and (6.8) imply

$$
n_{m_1} + n_{m_2}' = 4.
$$

(6.9)

(6.9) implies that either $n_{m_1} = 3$, $n_{m_2}' = 1$ or $n_{m_1} = 2$, $n_{m_2}' = 1$.

Case I. $n_{m_1} = 3$ and $n_{m_2}' = 1$. By (6.7), we have $3m_1 = n_2$. Observe that

$$
-1 = A_\ast^2 + 2 = A_\ast \cdot (-K) = A_\ast \cdot Z \geq 4(-3) + n_1 = -12 + 3m_1
\Rightarrow 3m_1 \leq 11
\Rightarrow m_1 \leq 3.
$$
If \(m_1 = 1, \) or 2, or 3, then we are in case (2), case (3) or case (4) respectively in the statement of the proposition.

Case II. \(n_{m_1} = 2 = n'_{m_2}. \) By (6.7), we have \(m_1 = m_2. \) Observe that

\[
-1 = A_* \cdot (-K) = A_* \cdot Z \geq 4(-3) + n_1 = -12 + 2m_1
\]

\[
\Rightarrow 2m_1 \leq 11
\]

\[
\Rightarrow m_1 \leq 5.
\]

If \(m_1 = 2, \) or 3, or 4, or 5, then we are in case (5), case (6), case (7) or case (8) respectively in the statement of the proposition. □

Proposition 6.10. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z. \) Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma. \) Let \(A_* \) be an effective component of \(\Gamma. \) Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to the \(D_n \) graph in case (2) of Theorem 4.2. Suppose also that \(\Gamma_1 \) intersects with \(A_* \) but is disjoint from other effective components. Let \(Z_1 \) be the fundamental cycle on \(\Gamma_1. \) Suppose \(A_* \cdot Z_1 = 1. \) If the coefficient \(z_* \) of \(A_* \) in \(Z \) is four and \(A_*^2 = -3, \) then \(A_* \cup \Gamma_1 \) and the restriction of \(Z \) on \(A_* \cup \Gamma_1 \) must be one of the following forms.

1. \(Z_{A_* \cup \Gamma_1} = 4 \quad 4 \quad 2 \)
2. \(Z_{A_* \cup \Gamma_1} = 4 \quad 5 \quad 6 \quad 4 \quad 2 \)
3. \(Z_{A_* \cup \Gamma_1} = 4 \quad 6 \quad 8 \quad 6 \quad 4 \quad 2 \)
4. \(Z_{A_* \cup \Gamma_1} = 4 \quad 7 \quad 10 \quad 8 \quad 6 \quad 4 \quad 2 \)
5. \(Z_{A_* \cup \Gamma_1} = 4 \quad 8 \quad 12 \quad 10 \quad 8 \quad 6 \quad 4 \quad 2 \)
6. \(Z_{A_* \cup \Gamma_1} = 4 \quad 9 \quad 14 \quad 12 \quad 10 \quad 8 \quad 6 \quad 4 \quad 2 \)
7. \(Z_{A_* \cup \Gamma_1} = 4 \quad 10 \quad 16 \quad 14 \quad 12 \quad 10 \quad 8 \quad 6 \quad 4 \quad 2 \)
8. \(Z_{A_* \cup \Gamma_1} = 4 \quad 11 \quad 18 \quad 16 \quad 14 \quad 12 \quad 10 \quad 8 \quad 6 \quad 4 \quad 2 \)
9. \(Z_{A_* \cup \Gamma_1} = 2 \quad 4 \quad 4 \quad \ldots \quad 4 \quad 4 \)
Proof. Consider A_* attaching on Γ_1 in the following form:

Since $A_i \cdot Z = A_i \cdot (-K) = A_i^2 + 2 = 0$, $1 \leq i \leq m$, we have the following system of equations:

\begin{align*}
-2n_1 + 4 + n_3 &= 0 \\
-2n_2 + n_3 &= 0 \\
-2n_3 + n_1 + n_2 + n_4 &= 0 \\
-2n_4 + n_3 + n_5 &= 0 \\
&\vdots \\
-2n_{m-1} + n_{m-2} + n_m &= 0 \\
-2n_m + n_{m-1} &= 0
\end{align*}

(6.10)

(6.11) implies

\begin{align*}
-2n_1 + 4 + n_3 &= 0 \\
-2n_2 + n_3 &= 0 \\
-2n_3 + n_1 + n_2 + n_4 &= 0 \\
-2n_4 + n_3 + n_5 &= 0 \\
&\vdots \\
-2n_{m-1} + n_{m-2} + n_m &= 0 \\
-2n_m + n_{m-1} &= 0
\end{align*}

\begin{align*}
-2n_1 + 4 + n_3 &= 0 \\
-2n_2 + n_3 &= 0 \\
-2n_3 + n_1 + n_2 + n_4 &= 0 \\
-2n_4 + n_3 + n_5 &= 0 \\
&\vdots \\
-2n_{m-1} + n_{m-2} + n_m &= 0 \\
-2n_m + n_{m-1} + 4 &= 0
\end{align*}

(6.13)

(6.14) implies $n_3 = n_4 = \cdots = n_m = 2n_1 = 2n_2$. By (6.14), we know that $n_1 = 2$. Therefore we are in case (9) of the proposition. □
Proposition 6.11. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_* be an effective component of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to either the E_6, E_7 or E_8 graph in case (3)–case (5) of Theorem 4.2. Suppose also that Γ_1 intersects with A_* but is disjoint from other effective components. Let Z_1 be the fundamental cycle of Γ_1. Suppose $A_* \cdot Z_1 = 1$. If the coefficient z_* of A_* in Z is four and $A_*^2 \leq -3$, then $A_* \cup \Gamma_1$ and the restriction of Z on $A_* \cup \Gamma_1$ must be of the form:

![Diagram](https://www.ams.org/journal-terms-of-use)

$$Z \bigg| _{A_* \cup \Gamma_1} = 4 \ 8 \ 6 \ 12 \ 10 \ 8 \ 6 \ 4$$

Proof. By Theorem 4.2, A_* attaching on E_6 must be of the following form:

![Diagram](https://www.ams.org/journal-terms-of-use)

$$Z \bigg| _{A_* \cup \Gamma_1} = 4 \ n_1 \ n_2 \ n_3 \ n_4 \ n_5 \ n_6$$

Since $A_i \cdot Z = A_i \cdot (\mathbf{K}) = 0$ for $1 \leq i \leq 6$, we have the following system of equations:

$$\begin{align*}
-2n_1 + 4 + n_2 &= 0 \\
-2n_2 + n_1 + n_3 &= 0 \\
-2n_3 + n_2 + n_4 + n_5 &= 0 \\
-2n_4 + n_3 &= 0 \\
-2n_5 + n_3 + n_6 &= 0 \\
-2n_6 + n_5 &= 0,
\end{align*}$$

which imply $n_6 = \frac{16}{7}$. This contradicts the fact that n_6 is an integer.

By Theorem 4.2, A_* attaching on E_7 must be of the following form:

![Diagram](https://www.ams.org/journal-terms-of-use)

$$Z \bigg| _{A_* \cup \Gamma_1} = 4 \ n_1 \ n_2 \ n_3 \ n_4 \ n_5 \ n_6 \ n_7 \ 4$$

Since $A_i \cdot Z = A_i \cdot (\mathbf{K}) = 0$ for $1 \leq i \leq 7$, we have the following system of equations:

$$\begin{align*}
-2n_1 + n_2 &= 0 \\
-2n_2 + n_1 + n_3 &= 0 \\
-2n_3 + n_2 + n_4 + n_5 &= 0 \\
-2n_4 + n_3 &= 0 \\
-2n_5 + n_3 + n_6 &= 0 \\
-2n_6 + n_5 + n_7 &= 0 \\
-2n_7 + n_6 + 4 &= 0.
\end{align*}$$

An easy exercise shows that we are in the form of the proposition.

By Theorem 4.2, A_* cannot attach on E_8 because $A_* \cdot Z_1 \geq 2$. \qed
Theorem 6.12. Let \((V, p)\) be a germ of minimally elliptic singularity. Let \(\pi: M \rightarrow V\) be the minimal resolution of \(p\). If case (1) of Proposition 6.2 holds, i.e., there exists only one effective component \(A_*\), and \(A_*^2 = -3\), \(z_* = 4\), then the weighted dual graph \(\Gamma\) of the exceptional set is one of the following forms.

\[
\begin{align*}
(1) & & & & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\
(2) & & & & 1 & 2 & 3 & & & & \\
(3) & & & & & 3 & 2 & 1 & & & \\
(4) & & & & & 1 & 2 & 3 & & & \\
(5) & & & & & 3 & 2 & 1 & & & \\
\end{align*}
\]

Proof. Let \(\Gamma'\) be the graph obtained by deleting \(A_*\) from \(\Gamma\). Let \(\Gamma_1, \ldots, \Gamma_m\) be the connected components of \(\Gamma'\) with fundamental cycles \(Z_1, \ldots, Z_m\) respectively. Since \(z_* = 4\), in view of Proposition 6.3 we have \(A_* \cdot Z_i = 1\) for \(1 \leq i \leq m\). By Proposition 6.9, Proposition 6.10 and Proposition 6.11 we have

\[
\{A_* \cdot Z/\Gamma_1, \ldots, A_* \cdot Z/\Gamma_m\} \subseteq \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.
\]

Since the singularity is minimally elliptic, we have

\[
A_* \cdot (Z - 4A_*) = -A_* \cdot (K + 4A_*) = A_*^2 + 2 - 4A_*^2 = 11.
\]
Observe that we can write

\[11 = 2 + 2 + 2 + 2 + 3 \]
\[= 2 + 2 + 2 + 5 \]
\[= 2 + 2 + 3 + 4 \]
\[= 2 + 2 + 7 \]
\[= 2 + 3 + 3 + 3 \]
\[= 2 + 3 + 6 \]
\[= 2 + 4 + 5 \]
\[= 2 + 9 \]
\[= 3 + 3 + 5 \]
\[= 3 + 4 + 4 \]
\[= 3 + 8 \]
\[= 4 + 7 \]
\[= 5 + 6 \]
\[= 11. \]

In case of \(11 = 2 + 2 + 2 + 2 + 3 \), by Proposition 6.9 (1) and (2) we obtain a graph with the proposed fundamental cycle

\[
\begin{align*}
Z &= \begin{pmatrix} 2 & 2 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{pmatrix} \\
&= \begin{pmatrix} 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 \end{pmatrix}
\end{align*}
\]

On the other hand one may find a positive cycle on the graph

with \(Z' < Z \) that also satisfies Definition 2.1. Therefore the proposed fundamental cycle \(Z \) does not satisfy the minimum condition stated in Definition 2.1. Hence there is no dual graph produced from this case.

Similarly, by Propositions 6.9, 6.10 and 6.11 together with Definition 2.1 in cases \(11 = 2 + 2 + 2 + 5 \), \(11 = 2 + 2 + 3 + 4 \) and \(11 = 2 + 2 + 7 \), there is no dual graph produced. In the case of \(11 = 1 + 3 + 3 + 3 \), we have case (1). In the case of \(11 = 2 + 3 + 6 \), we only have case (2). In the case of \(11 = 2 + 4 + 5 \), there is no dual graph produced. In the case of \(11 = 2 + 9 \), we only have case (3). In the case of \(11 = 3 + 3 + 5 \), we have case (4). In the cases \(11 = 3 + 4 + 4 \), \(11 = 3 + 8 \) and \(11 = 4 + 7 \), there is no dual graph produced. In the case of \(11 = 5 + 6 \), we only have case (5). Finally case \(11 = 11 \) does not produce any dual graph.

\[\square \]

Proposition 6.13. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z \). Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma \). Let \(A_\ast \) be an effective component of \(\Gamma \). Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to a rational
double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with A_* but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_* \cdot Z_1 = 1$. If the coefficient z_* of A_* in Z is 2 and $A_*^2 = -4$, then $A_* \cup \Gamma_1$ and the restriction of Z on $A_* \cup \Gamma_1$ must be one of the following forms.

\begin{align*}
(1) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 1
\end{array}
\end{array}

(2) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 1 2 3 2 1
\end{array}
\end{array}

(3) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 1 2 3 4 3 2 1
\end{array}
\end{array}

(4) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 1 2 3 4 5 4 3 2 1
\end{array}
\end{array}

(5) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 1 2 3 4 5 6 5 4 3 2 1
\end{array}
\end{array}

(6) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 3 4 3 2 1
\end{array}
\end{array}

(7) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 3 4 5 4 3 2 1
\end{array}
\end{array}

(8) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 3 4 5 6 5 4 3 2 1
\end{array}
\end{array}

(9) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 3 4 5 6 5 4 3 2 1
\end{array}
\end{array}

(10) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 3 4 5 6 5 4 3 2 1
\end{array}
\end{array}

(11) & \quad \begin{array}{c}
\begin{array}{c}
-4 \\
A_*
\end{array}
\end{array} \\
& \quad \begin{array}{c}
\begin{array}{c}
Z_{A_* \cup \Gamma_1} = 2 3 4 5 6 5 4 3 2 1
\end{array}
\end{array}

Proof. The proof is similar to those of Propositions 6.9, 6.10 and 6.11. \qed

Theorem 6.14. Let (V, p) be a germ of minimally elliptic singularity. Let $\pi: M \to V$ be the minimal resolution of p. If case (2) of Proposition 6.2 holds, i.e., if there exists only one effective component A_*, and $A_*^2 = -4$, $z_* = 2$, then the weighted dual graph Γ of the exceptional set is one of the following forms.
\[(1) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[r \geq 0\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(2) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[r \geq 0\]
\[Z = \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(3) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(4) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(5) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(6) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[r \geq 0 \quad s \geq 0\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(7) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(8) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(9) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[r \geq 0 \quad s \geq 0\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]

\[(10) \quad A_4 - 4\]
\[\begin{array}{c}
A_4 \\
-4
\end{array}
\]
\[r \geq 0 \quad s \geq 0\]
\[Z = 1 \quad \frac{1}{2} \quad \frac{1}{2} \quad 1\]
(11) \[A_r - 4 \]
\[r \geq 0 \]
\[Z = 1 \begin{array}{cccccc} 2 & \ldots & 2 & 3 & 4 & 5 \end{array} 6 4 2 \]

(12) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccccc} 2 & 3 & 4 & 5 & 4 & 3 \end{array} 2 1 \]

(13) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccc} 2 & 5 & 8 & 7 \end{array} 6 5 4 3 2 1 \]

(14) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccc} 2 & \ldots & 2 \end{array} \begin{array}{c} 1 \end{array} \]
\[\vdots \]
\[2 \]
\[1 \ 1 \]

(15) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccc} 2 & \ldots & 2 \end{array} 4 3 2 1 \]

(16) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccc} 2 & \ldots & 2 \end{array} 4 6 5 4 3 2 1 \]

(17) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccc} 2 & \end{array} 3 2 1 \]

(18) \[A_r - 4 \]
\[Z = 1 \begin{array}{cccc} 2 & \end{array} 3 2 1 \]
Proof. The proof is the same as those given in Theorem 6.12. By Proposition 6.13, we have
\[\{ A_+ \cdot Z/\Gamma_m, \ldots, Z_+ \cdot Z/\Gamma_m \} \subseteq \{1, 2, 3, 4, 5, 6\} . \]
Since the singularity is minimally elliptic, we have
\[A_+ \cdot (Z - 2A_+) = -A_+ (K + 2A_+) = -A_+^2 + 2 = 6 . \]

Observe that we can write
\[
\begin{align*}
6 &= 1 + 1 + 1 + 1 + 1 + 1 \quad \text{(case (1))} \\
 &= 1 + 1 + 1 + 1 + 2 \quad \text{(case (2))} \\
 &= 1 + 1 + 1 + 3 \quad \text{(case (3), case (4), case (5))} \\
 &= 1 + 1 + 2 + 2 \quad \text{(case (6))} \\
 &= 1 + 1 + 4 \quad \text{(case (7), case (8))} \\
 &= 1 + 2 + 3 \quad \text{(case (9), case (10), case (11))} \\
 &= 1 + 5 \quad \text{(case (12), case (13))} \\
 &= 2 + 2 + 2 \quad \text{(case (14))} \\
 &= 2 + 4 \quad \text{(case (15), case (16))}
\end{align*}
\]
Proposition 6.15. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z \). Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma \). Let \(A_* \) be an effective component of \(\Gamma \). Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to a rational double point graph in Theorem 4.2. Suppose also that \(\Gamma_1 \) intersects with \(A_* \) but is disjoint from other effective components. Let \(Z_1 \) be the fundamental cycle on \(\Gamma_1 \). Suppose \(A_* \cdot Z_1 = 1 \). If the coefficient \(z_* \) of \(A_* \) in \(Z \) is \(1 \) and \(A^2_* = -6 \), then such a graph does not exist.

Proof. The proof is similar to those of Propositions 6.9, 6.10 and 6.11.

Theorem 6.16. Let \((V,p)\) be a germ of minimally elliptic singularity. Let \(\pi: M \rightarrow V \) be the minimal resolution of \(p \). If case (3) of Proposition 6.2 holds, i.e., if there exists one effective component \(A_* \), and \(A^2_* = -6 \), \(z_* = 1 \), then the weighted dual graph \(\Gamma \) of the exceptional set is one of the following forms.

\[
\begin{align*}
(1) & \quad A_* \quad -6 \quad r \geq 1 \quad Z = \frac{1}{r} \quad r \geq 1 \\
(2) & \quad \begin{cases}
(i) & Z = 1 \ 2 \ 1 \\
(ii) & Z = 1 \ 2 \ 1
\end{cases}
\end{align*}
\]

\[
\begin{align*}
(3) & \quad Z = 1 \ 2 \ 3 \ 2 \ 1 \\
(4) & \quad Z = 1 \ 2 \ 3 \ 4 \ 3 \ 2 \ 1 \\
(5) & \quad Z = 1 \ 2 \ 4 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1
\end{align*}
\]

Proof. This follows easily from Proposition 6.3, Corollary 6.4 and Proposition 6.15.

Proposition 6.17. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z \). Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma \). Let \(A_* \) be an effective component of \(\Gamma \). Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to a rational
double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with A_* but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_* \cdot Z_1 = 1$. If the coefficient z_* of Z_* in Z is 2 and $A_*^2 = -3$, then $A_* \cup \Gamma_1$ and the restriction of Z on $A_* \cup \Gamma_1$ must be one of the following forms.

\begin{align*}
(1) & \quad Z_{A_*} = 21 \\
(2) & \quad Z_{A_*} = 21 \\
(3) & \quad Z_{A_*} = 21 \\
(4) & \quad Z_{A_*} = 21 \\
(5) & \quad Z_{A_*} = 21 \\
(6) & \quad Z_{A_*} = 21 \\
(7) & \quad Z_{A_*} = 21 \\
(8) & \quad Z_{A_*} = 21 \\
(9) & \quad Z_{A_*} = 21 \\
(10) & \quad Z_{A_*} = 21 \\
(11) & \quad Z_{A_*} = 21 \\
\end{align*}

Proof. The proof is similar to those of Propositions 6.9, 6.10 and 6.11.

Proposition 6.18. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_{11} and A_{22} be two effective components of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with both A_{11} and A_{22}, but no other effective component. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_{11} \cdot Z_1 = A_{22} \cdot Z_1 = 1$. If $A_{11} \cdot A_{22} = 0$ and the coefficients...
\[z_{A_1} \text{ of } A_{41} \text{ and } z_{A_2} \text{ of } A_{42} \text{ in } Z \text{ are } 2 \text{ and } A_{41}^2 = A_{42}^2 = -3, \text{ then } A_{41} \cup A_{42} \cup \Gamma_1 \text{ and the restriction of } Z \text{ on } A_{41} \cup A_{42} \cup \Gamma_1 \text{ must be one of the following forms.} \]

| Diagram | Description | \[Z |_{A_{41} \cup A_{42} \cup \Gamma_1} \] |
|---------|-------------|-----------------------------------|
| ![Diagram 1](image1.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{3} \quad 3 \quad 2 \quad 1 \] |
| ![Diagram 2](image2.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{4} \quad 2 \quad 2 \] |
| ![Diagram 3](image3.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{3} \quad 4 \quad 3 \quad 2 \] |
| ![Diagram 4](image4.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{5} \quad 3 \quad 4 \quad 3 \quad 2 \] |
| ![Diagram 5](image5.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{4} \quad 4 \quad 5 \quad 4 \quad 3 \quad 2 \] |
| ![Diagram 6](image6.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{6} \quad 4 \quad 4 \quad 3 \quad 2 \] |
| ![Diagram 7](image7.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{5} \quad 6 \quad 4 \quad 2 \] |
| ![Diagram 8](image8.png) | \[-3 \quad A_1 \quad -3 \quad A_2 \] | \[\frac{2}{4} \quad 4 \quad 4 \quad 4 \quad 2 \] |
| ![Diagram 9](image9.png) | \[-3 \quad A_1 \quad -3 \quad A_1 \] | \[\frac{2}{3} \quad 3 \quad 2 \quad 4 \] |
| ![Diagram 10](image10.png) | \[-3 \quad A_1 \quad -3 \quad A_1 \] | \[\frac{2}{4} \quad 6 \quad 4 \quad 4 \] |
Proof. (1) Assume that Γ_1 is of the form of case (1) in Theorem 4.2. Consider A_{i1} and A_{i2} attaching on Γ_1 in the following form:

\[Z \bigg|_{A_{i1} \cup A_{i2} \cup \Gamma_1} = 2 \begin{array}{l} n_1 \\ n_2 \\ \vdots \\ n_m \end{array} \]

As in the proof of Proposition 6.9 we have $m = 1$ or $m = 3$. If $m = 1$, then we are in case (3). If $m = 3$, then we are in case (1).

Consider A_{i1} and A_{i2} attaching on Γ_1 in the following form:

\[Z \bigg|_{A_{i1} \cup A_{i2} \cup \Gamma_1} = n'_2 \ldots n'_2 \begin{array}{l} 2 \\ 2 \\ n_1 \\ n_2 \\ \ldots \\ n_m \end{array} \]

As in the proof of Proposition 6.9 we have either $n_{m_1} = 3$, $n'_{m_2} = 1$ or $n_{m_1} = 2 = n'_{m_2}$.

If $n_{m_1} = 3$, $n'_{m_2} = 1$, then $m_2 = 3m_1$ and $n_1 = 3m_1$. Since $-1 = A_{i1}^2 + 2 = A_{i1} \cdot (-K) = A_{i1} \cdot Z \geq 2(-3) + n_1 \Rightarrow n_1 = 3m_1 \leq 3$, therefore $m_1 = 1$, $m_2 = 3$ and we are in case (1).

If $n_{m_1} = 2 = n'_{m_2}$, then $m_1 = m_2$ and $n_1 = 2m_1$. The same argument as above shows that $2m_1 \leq 5$, i.e., $m_1 \leq 2$. If $m_1 = 1$, then we are in case (3). If $m_1 = 2$, then we are in case (2).

Consider A_{i1} and A_{i2} attaching a Γ_1 in the following form:

\[Z \bigg|_{A_{i1} \cup A_{i2} \cup \Gamma_1} = 2 \begin{array}{l} n_1 \\ n_2 \\ \ldots \\ n_m \end{array} \]
Since $A_i \cdot Z = A_i \cdot (-K) = A_i^2 + 2 = 0$, $1 \leq i \leq m$, we have

\[
\begin{align*}
-2n_1 + 2 + n_2 &= 0 \\
-2n_2 + n_1 + n_3 &= 0 \\
-2n_m - 1 + n_{m-2} + n_m &= 0, \\
-2n_m + n_{m-1} + 2 &= 0. \\
\end{align*}
\]

(6.15)

(6.15) implies

\[
n_j = jn_1 - 2(j - 1), \quad 2 \leq j \leq m.
\]

(6.16) and (6.17) imply $n_1 = 2 = n_2 = \cdots = n_m$. We are in case (3).

Consider A_{s1} and A_{s2} attaching on Γ_1 in the following form:

\[
\begin{array}{c}
\vdots \\
A_{s2} & A_1 & A_2 \\
\vdots \\
A_{m2} & A_1 & A_2 \\
\end{array}
\]

Since $A_i \cdot Z = A_i \cdot (-K) = A_i^2 + 2 = 0$, $1 \leq i \leq m$ and $A_i' \cdot Z = A_i' \cdot (-K) = A_j^2 + 2 = 0$, $2 \leq j \leq m_2$, we have

\[
\begin{align*}
-2n_{m_1} + n_{m_1-1} + 2 &= 0 \\
-2n_{m_1-1} + n_{m_1-2} + n_{m_1} &= 0 \\
-2n_3 + n_2 + n_4 &= 0 \\
-2n_2 + n_1 + n_3 &= 0, \\
-2n_{m_2}' + n_{m_2}' - 1 &= 0 \\
-2n_{m_2}' - 1 + n_{m_2}' - 2 + n_{m_2}' &= 0 \\
-2n_2' + n_1 + n_3' &= 0, \\
-2n_2' + n_1 + n_3' &= 0, \\
2 - 2n_1 + n_2 + n_2' &= 0. \\
\end{align*}
\]

(6.16) implies

\[
n_j = (m_1 - j + 1)n_{m_1} - 2(m_1 - j), \quad 1 \leq j \leq m_1 - 1.
\]

(6.19) implies

\[
n_j' = (m_2 - j + 1)n_{m_2}', \quad 1 \leq j \leq m_2 - 1.
\]

(6.21) and (6.22) imply

\[
m_1n_{m_1} - 2(m_1 - 1) = m_2n_{m_2}' = n_1.
\]

(6.23)

(6.23), (6.21) and (6.22) imply $n_{m_1} + n_{m_2}' = 4$. We have either $n_{m_1} = 3$, $n_{m_2}' = 1$ or $n_{m_1} = 2 = n_{m_2}'$.

If $n_{m_1} = 3$ and $n_{m_2}' = 1$, then (6.23) implies $m_2 = m_1 + 2 = n_1$. -1 = $A_{s1}^2 + 2 = A_{s1} \cdot (-K) = A_{s1} \cdot Z \geq 2(-3) + n_1$ implies $m_1 + 2 = n_1 \leq 5$, i.e., $m_1 \leq 3$. If
$m_1 = 1$, then $m_2 = 3$ and we are in case (1). If $m_1 = 2$, then $m_2 = 4$ and we are in case (4). If $m_1 = 3$, then $m_2 = 5$ and we are in case (5).

If $n_{m_2} = 2 = n'_{m_2}$, then (6.23) implies $m_2 = 1$ and we are in case (3).

Consider A_1 and A_2 attaching on Γ_1 in the following form:

By the same argument as before, we have the following equations:

\[
\begin{align*}
-2n'_{m_2} + n'_{m_2-1} &= 0 \\
-2n'_{m_2-1} + n'_{m_2-2} + n'_{m_2} &= 0 \\
-2n'_{3} + n'_{2} + n'_{4} &= 0 \\
-2n'_{2} + n'_{1} + n'_{3} &= 0 \\
-2n_{1} + n'_{0} + n_{2} + 2 &= 0, \\
-2n_{2} + n_{1} + n_{3} &= 0 \\
-2n_{3} + n_{2} + n_{4} &= 0 \\
-2n_{m_2-1} + n_{m_2-2} + n_{m_1-1} &= 0 \\
-2n_{m_1-1} + n_{m_1-2} + n_{m_1} &= 0 \\
-2n_{m_1} + n_{m_1-1} + n_{m_1+1} + 2 &= 0, \\
-2n_{m_{1+1}} + n_{m_1} + n_{m_{1+2}} &= 0 \\
-2n_{m_{1+2}} + n_{m_{1+1}} + n_{m_1+3} &= 0 \\
-2n_{m_{1+m_3}} + n_{m_1} + n_{m_{1+m_3}} &= 0 \\
-2n_{m_{1+m_3}} + n_{m_1+m_3} &= 0.
\end{align*}
\]

(6.24) implies
\[
n' = (m_2 - j + 1)n'_{m_2}, \quad 1 \leq j \leq m_2 - 1.
\]

(6.25) and (6.29) imply
\[
n_2 = (m_2 + 1)n'_{m_2} - 2.
\]

(6.30) and (6.26) imply
\[
n_j = (m_2 + j - 1)n'_{m_2} - 2(j - 1), \quad 3 \leq j \leq m_1.
\]

(6.28) implies
\[
n_{m_1+j} = (m_3 - j + 1)n_{m_1+m_3}, \quad 0 \leq j \leq m_3 - 1.
\]

(6.31) and (6.32) imply
\[
n_{m_1} = (m_2 + m_1 - 1)n'_{m_2} - 2(m_1 - 1) = (m_3 + 1)n_{m_1+m_2}.
\]
(6.31), (6.32) and (6.27) imply
(6.34) $(m_2 + m_1)n'_m - 2m_1 = m_3n_{m_1 + m_3} + 2$.

(6.33) and (6.34) imply $n'_{m_2} + n_{m_1 + m_3} = 4$. Therefore we have either $n'_{m_2} = 1$, $n_{m_1 + m_3} = 3$ or $n'_{m_2} = 2 = n_{m_1 + m_3}$.

If $n'_{m_2} = 1$ and $n_{m_1 + m_3} = 3$, then $m_2 = m_1 + 3m_3 + 2$ by (6.34) and $n_1 = m_2$ by (6.29). Since $-1 = A^2 + 2 = A_4(-K) = A_4 \cdot Z \geq 2(-3) + n_1$, we have $m_2 \leq 5$.

Hence $m_1 + 3m_3 \leq 3$. Since $m_1 \geq 2$, we have either $m_3 = 0$, $m_1 = 2$, $m_2 = 4$, or $m_3 = 0$, $m_1 = 3$, $m_2 = 5$. If $m_3 = 0$, $m_1 = 2$, $m_2 = 4$, then we are in case (4). If $m_3 = 0$, $m_1 = 3$, $m_2 = 5$, then we are in case (5).

If $n'_{m_2} = 2 = n_{m_1 + m_3}$, then $n_1 = 2m_2$ and $m_2 = m_3 + 1$ by (6.33). Since $-1 = A^2 + 2 = A_4(-K) = A_4 \cdot Z \geq 2(-3) + n_1$, we have $2m_2 \leq 5$, which implies $m_2 \leq 2$ and $m_3 \leq 1$. If $m_3 = 0$ and $m_2 = 1$, then we are in case (3). If $m_3 = 1$ and $m_2 = 2$, then $n_j = 4$, $1 \leq j \leq m_1$ and we are in case (6).

(II) Assume that Γ_1 is of the form D_m of case (2) in Theorem 4.2.

Consider A_1 and A_2 attaching on Γ_1 in the following form:

As in the proof of Proposition 6.10 we have $n_m = 2$, $n_1 = m$, $n_2 = m - 2$, $n_j = 2(m - j + 1)$, $3 \leq j \leq m$. Since $-1 = A^2 + 2 = A_4(-K) = A_4 \cdot Z \geq 2(-3) + n_1$, we have $m \leq 5$. If $m = 4$, then we are in case (8). If $m = 5$, then we are in case (7).

Consider A_1 and A_2 attaching on Γ_1 in the following form:

As in the proof of Proposition 6.10 we have $n_1 = n_2 = 2$, $n_3 = \cdots = n_m = 4$ and we are in case (8).

Consider A_1 and A_2 attaching on Γ_1 in the following form:

By the same argument as before, we have the following equations:

\[
\begin{align*}
&-2n_1 + 2 + n_3 = 0 \\
&-2n_2 + 2 + n_3 = 0 \\
&-2n_4 + n_3 + n_5 = 0 \\
&\vdots
\end{align*}
\]

(6.35)

\[
\begin{align*}
&-2n_{m-1} + n_{m-2} + n_m = 0 \\
&-2n_m + n_{m-1} = 0,
\end{align*}
\]

(6.36) $-2n_3 + n_1 + n_2 + n_4 = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(6.37) \[n_1 = n_2 = 1 + \frac{m - 2}{2} n_m, \quad n_j = (m - j + 1)n_m, \quad 3 \leq j \leq m. \]

(6.36) and (6.37) imply \(n_m = 2 \) and \(n_1 = n_2 = m - 1 \). Since \(-1 = A_{s_1}^2 + 1 = A_{s_1} \cdot (-K) = A_{s_1} \cdot Z \geq 2(-3) + n_1 \), we have \(m \leq 6 \). Hence we are in case (9) and case (10) and case (11).

Consider \(A_{s_1} \) and \(A_{s_2} \) attaching on \(\Gamma_1 \) in the following form:

By the same argument as before, we have the following equations:

\[
\begin{align*}
-2n_1 + 2 + n_3 &= 0 \\
-2n_2 + n_3 &= 0 \\
-2n_3 + n_1 + n_2 + n_4 &= 0 \\
-2n_4 + n_3 + n_5 &= 0 \\ &\vdots \\
-2n_{m-1} + n_{m-2} + n_m &= 0,
\end{align*}
\]

(6.39) implies

\[
(6.40) \quad n_1 = 1 + n_2, \quad n_j = 2n_2 - (j - 3), \quad 3 \leq j \leq m.
\]

(6.39) and (6.40) imply \(n_2 = \frac{m}{2} \). In particular \(m \) is even. Since \(-1 = A_{s_1}^2 + 2 = A_{s_1} \cdot (-K) = A_{s_1} \cdot Z \geq 2(-3) + n_1 \), we have \(n_1 \leq 5 \), which implies \(1 + \frac{m}{2} \leq 5 \) and hence \(m \leq 8 \). If \(m = 4, 6, 8 \), then we are in case (9), case (12) and case (13) respectively.

(III) Assume that \(\Gamma_1 \) is of the form \(E_6 \) of case (3) in Theorem 3.2

Consider \(A_{s_1} \) and \(A_{s_2} \) attaching on \(E_6 \) in the following form:

As in the proof of Proposition 6.11, we find out that this case is not possible. Consider \(A_{s_1} \) and \(A_{s_2} \) attaching on \(E_6 \) in the following form:
By the same argument as before, we have the following equations:

\begin{align*}
-2n_1 + 2 + n_2 &= 0 \\
-2n_2 + n_1 + n_3 &= 0 \\
-2n_3 + n_2 + n_4 + n_5 &= 0 \\
-2n_4 + n_3 &= 0 \\
-2n_5 + n_3 + n_6 &= 0 \\
-2n_6 + n_5 + 2 &= 0.
\end{align*}

An easy exercise shows that we are in case (14).

(IV) Assume that \(\Gamma_1 \) is of the form \(E_7 \) of case (4) in Theorem 4.2. Consider \(A_1^* \) and \(A_2^* \) attaching on \(E_7 \) in the following form:

\[
A_1 \rightarrow A_2 \\
A_3 \rightarrow A_4 \rightarrow A_5 \rightarrow A_6 \rightarrow A_7 \rightarrow A_8 \\
\begin{array}{c}
\vdots
\end{array}
\]

By the same argument as before, we have the following equations:

\begin{align*}
-2n_1 + n_2 &= 0 \\
-2n_2 + n_1 + n_3 &= 0 \\
-2n_3 + n_2 + n_4 + n_5 &= 0 \\
-2n_4 + n_3 &= 0 \\
-2n_5 + n_3 + n_6 &= 0 \\
-2n_6 + n_5 + n_7 &= 0 \\
-2n_7 + n_6 + 4 &= 0.
\end{align*}

(6.41)

(6.11) implies

\[
Z \bigg|_{A_1^* \cup A_2^* \cup \Gamma_1} = n_1 n_2 n_3 n_4 n_5 n_6 n_7 2.
\]

Since \(-1 = A_1^2 + 2 = A_1^* \cdot (-K) = A_1^* \cdot Z \geq 2(-3) + 6 = 0, \) this is absurd. This case is impossible.

(V) Assume that \(\Gamma_1 \) is of the form \(E_8 \) of case (5) in Theorem 4.2. This case cannot happen because \(A_1^* \cdot Z_1 \geq 2. \)

\begin{theorem}
Let \((V, p)\) be a germ of minimally elliptic singularity. Let \(\pi: M \rightarrow V \) be the minimal resolution of \(p. \) If case (4) of Proposition 6.2 holds, i.e., if there exist two effective components \(A_{\star 1} \) and \(A_{\star 2} \) with \(A_{\star 1}^2 = -3 = A_{\star 2}^2 \) and \(z_{\star 1} = 2 = z_{\star 2}, \) then the weighted dual graph \(\Gamma \) of the exceptional set is one of the following forms.

\[
(1a_1) \\
A_{\star 1} \\
\begin{array}{c}
-3
\end{array}
\]

\[
\begin{array}{c}
1 1 \\
\begin{array}{c}
1 \frac{1}{2} \\
\end{array}
\end{array}
\]

\[
Z = 1 \frac{1}{2} 3 2 1
\]
\end{theorem}
CLASSIFICATION OF WEIGHTED DUAL GRAPHS

(3c1) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1 \]

(3c2) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 2 \quad \ldots \quad 2 \quad 4 \quad 3 \quad 2 \quad 1 \]

(3c3) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 4 \quad 2 \]

(3d1) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1 \]

(3d2) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 4 \quad 2 \]

(3e) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 2 \quad 4 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 4 \quad 2 \]

(4a1) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1 \]

(4a2) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad 1 \]

(5a1) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 1 \]

(5a2) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 1 \]

(9a1) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 1 \]

(9a2) \[\begin{array}{c}
A_{+1} \quad -3 \\
A_{+2} \quad -3
\end{array} \]

\[Z = 1 \quad 2 \quad 3 \quad 4 \quad 3 \quad 2 \quad \ldots \quad 2 \quad 1 \]
Since we have two effective components, by Corollary 6.4 we have

Proof. Since the singularity is minimally elliptic, \(A_{x_i}^2 = -3, \ z_{x_i} = 2 \) for \(i = 1, 2 \), we have

\[
(6.42) \quad A_{x_i} \cdot (Z - 2A_{x_i}) = -A_{x_i} \cdot (K + 2A_{x_i}) = A_{x_i}^2 + 2 - 2A_{x_i}^2 = 5.
\]

Let \(\Gamma' \) be the graph obtained by deleting \(A_{x_1} \) and \(A_{x_2} \) from \(\Gamma \). Let \(\Gamma_1, \ldots, \Gamma_m \) be the connected components of \(\Gamma' \) with fundamental cycles \(Z_1, \ldots, Z_m \) respectively. \((6.42)\) implies that

\[
(6.43) \quad \sum_{j=1}^{m} A_{x_i} \cdot Z/\Gamma_j = 5, \quad \text{for } i = 1, 2.
\]

Since we have two effective components, by Corollary 6.4 we have

\[
(6.44) \quad A_{x_i} \cdot Z_j = 1 \quad \text{for } i = 1, 2 \text{ and } 1 \leq j \leq m.
\]

Consider first that \(A_{x_1} \) and \(A_{x_2} \) do not meet. Then Proposition \(6.18 \) applies. For case (1) of Proposition \(6.18 \) if the decomposition \((6.43) \) at \(A_{x_1} \) is \(5 = 1 + 1 + 3 \) and the decomposition \((6.43) \) of \(A_{x_2} \) is \(5 = 1 + 1 + 3 \), then we are in case \((1a_1) \). If the decomposition \((6.43) \) at \(A_{x_1} \) is \(5 = 1 + 1 + 3 \) and the decomposition of \((6.43) \) at \(A_{x_2} \) is \(2 + 3 \), then we are in case \((1a_2) \). If the decomposition \((6.43) \) at \(A_{x_1} \) and \(A_{x_2} \) are \(2 + 3 \), then we are in case \((1b) \).

For case (2) of Proposition \(6.18 \) the decomposition of \((6.43) \) at \(A_{x_1} \) and \(A_{x_2} \) must be \(5 = 4 + 1 \). From Proposition \(6.17 \) we obtain a possible dual graph together with a proposed fundamental cycle. One may check that the proposed fundamental cycle does not meet the minimum condition required by Definition \(2.23 \). Therefore there is no dual graph produced from this case.

For case (3) of Proposition \(6.18 \) if the decomposition of \((6.43) \) at \(A_{x_1} \) is \(5 = 2 + 1 + 1 + 1 \) and the decomposition at \(A_{x_2} \) is either \(5 = 2 + 1 + 1 + 1 \), or \(5 = 2 + 2 + 1 \), or \(5 = 2 + 3 \), according to Proposition \(6.17 \) we are in case \((3a_1), \ldots, (3a_5) \) respectively.
If the decomposition of (6.43) at A_1 is $5 = 2 + 2 + 1$ and the decomposition at A_2 is $5 = 2 + 2 + 1$, or $5 = 2 + 3$, we are in case $(3b_1), \ldots, (3b_4)$. If the decompositions of (6.43) at A_1 and at A_2 are both $5 = 2 + 3$, we are in case $(3c_1), (3c_2), (3c_3), (3d_1), (3d_2)$, and $(3e)$.

For case (4) of Proposition 6.18, if the decomposition of (6.43) at A_1 is $5 = 4 + 1$ and the decomposition of (6.43) at A_2 is $5 = 3 + 1 + 1$, we have case $4(a_1)$. If the decompositions of (6.43) at A_1 and A_2 are both $5 = 4 + 1$ and $5 = 3 + 2$ respectively, we have case $4(a_2)$.

For case (5) of Proposition 6.18, the decomposition of (6.43) at A_1 must be $5 = 5 + 0$. If the decomposition of (6.43) at A_2 is $5 = 3 + 1 + 1$, we have case $5(a_1)$. If the decomposition of (6.43) at A_2 is $5 = 3 + 2$, we have case $5(a_2)$.

For case (6) of Proposition 6.18, the decompositions of (6.43) at A_1 and A_2 must be $5 = 4 + 1$. For case (7) of Proposition 6.18, the decomposition of (6.43) at A_1 and A_2 must be $5 = 5 + 0$. For case (8) of Proposition 6.18, the decompositions of (6.43) at A_1 and A_2 must be $5 = 4 + 1$. In all these cases, the proposed fundamental cycles on the possible dual graphs obtained via Proposition 6.17 do not meet the minimum condition required in Definition 2.1. Therefore there is no dual graph produced from these cases.

For case (9) of Proposition 6.18, if the decomposition of (6.43) at A_1 is $5 = 3 + 1 + 1$ and the decomposition of (6.43) at A_2 is $5 = 3 + 1 + 1$ or $5 = 3 + 2$, we have cases $9(a_1)$ and $9(a_2)$ respectively. If the decomposition of (6.43) at A_1 and A_2 is $5 = 3 + 2$, we have case $9(b)$.

For case (10) of Proposition 6.18, the decomposition of (6.43) at A_1 and A_2 must be $5 = 4 + 1$. For case (11) of Proposition 6.18, the decomposition of (6.43) at A_1 and A_2 must be $5 = 5 + 0$. The proposed fundamental cycles on the possible dual graphs obtained via Proposition 6.17 do not meet the minimum condition of Definition 2.1. Hence there is no dual graph produced from these two cases.

For case (12) of Proposition 6.18, the decomposition of (6.43) at A_1 must be $5 = 4 + 1$. The decomposition of (6.43) at A_2 must be $5 = 3 + 1 + 1$ or $5 = 3 + 2$. We have cases $12(a_1)$ and $12(a_2)$ respectively.

For case (13) of Proposition 6.18, the decomposition of (6.43) at A_1 must be $5 = 5 + 0$. The decomposition of (6.43) at A_2 must be $5 = 3 + 1 + 1$ or $5 = 3 + 2$. We have cases $13(a_1)$ and $13(a_2)$ respectively.

For case (14) of Proposition 6.18, the decomposition of (6.43) at A_1 and A_2 must be $5 = 4 + 1$. Again the proposed fundamental cycle does not meet the minimum condition of Definition 2.1. There is no dual graph produced from this case.

We next consider the case $A_1 \cdot A_2 > 0$. Since the singularity is minimally elliptic and $z_{A_1} = z_{A_2} = 2$, it follows that $A_1 \cdot A_2 = 1$. Then we are in cases $(3a_1)-(3e)$ by an argument similar to the above.

\begin{proposition}
Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_* be an effective component of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with A_* but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_* \cdot Z_1 = 1$. If the coefficient z_* of A_* in Z is 3 and $A^2_* = -3$, then $A_* \cup \Gamma_1$ and the restriction of Z on $A_* \cup \Gamma_1$ must be one of the following forms.
\end{proposition}
Proof. The proof is similar to those of Propositions 6.9, 6.10 and 6.11.

Proposition 6.21. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_\ast be an effective component of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with A_\ast, but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_\ast \cdot Z_1 = 1$. If the coefficient z_\ast of A_\ast in Z is 1 and $A^2_\ast \leq -3$, then such a graph does not exist.

Proof. The proof is similar to those of Propositions 6.9, 6.10 and 6.11.

Proposition 6.22. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let $A_{\ast 1}$ and $A_{\ast 2}$ be two effective components of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with $A_{\ast 1}$ and $A_{\ast 2}$, but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_{\ast 1} \cdot Z_1 = 1 = A_{\ast 2} \cdot Z_1$. If $A_{\ast 1} \cdot A_{\ast 2} = 0$, the coefficients $z_{\ast 1}$ and $z_{\ast 2}$ of $A_{\ast 1}$ and $A_{\ast 2}$ are 3 and 1 respectively, and $A^2_{\ast 1} = A^2_{\ast 2} = -3$, then $A_{\ast 1} \cup A_{\ast 2} \cup \Gamma_1$ and the restriction of Z on $A_{\ast 1} \cup A_{\ast 2} \cup \Gamma_1$ must be one of the following forms.
Proof. The proof is the same as those in Proposition 6.18. □

Theorem 6.23. Let \((V, p)\) be a germ of minimally elliptic singularity. Let \(\pi: M \to V\) be the minimal resolution of \(p\). If case (5) of Proposition 6.2 holds, i.e., if there exist two effective components \(A_{*1}\) and \(A_{*2}\) with \(A_{*1}^2 = -3 = A_{*2}^2\) and \(z_{*1} = 3\), \(z_{*2} = 1\), then the weighted dual graph \(\Gamma\) of the exceptional set is one of the following forms.

\[
\begin{align*}
(3) & \quad Z_{|A_{*1} \cup A_{*2} \cup \Gamma_1} = \frac{2}{3} \quad Z = 2 4 6 5 4 3 2 1 \\
(4) & \quad Z_{|A_{*1} \cup A_{*2} \cup \Gamma_1} = \frac{3}{2} \quad Z = 2 6 8 7 6 5 4 3 2 1
\end{align*}
\]
Proof. Since $z_{e_2} = 1$, $z_{e_1} = 3$, $A^2_{e_2} = -3$ and $A_{e_2} \cdot Z = -1$, we have $A_{e_1} \cdot A_{e_2} = 0$. The proof is similar to those of Theorem 6.19 by using Propositions 6.20, 6.21 and 6.22.

Proposition 6.24. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_{e_1} and A_{e_2} be two effective components of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 3.2. Suppose also that Γ_1 intersects with A_{e_1} and A_{e_2}, but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose that $A_{e_1} \cdot Z_1 = 1 = A_{e_2} \cdot Z_1$. If $A_{e_1} \cdot A_{e_2} = 0$, $z_{e_1} = 2$, $z_{e_2} = 1$ (coefficients of A_{e_1} and A_{e_2} in Z respectively), and $A^2_{e_1} = -3$, $A^2_{e_2} = -4$ or -3, then $A_{e_1} \cup A_{e_2} \cup \Gamma_1$ and the restriction of Z on $A_{e_1} \cup A_{e_2} \cup \Gamma_1$ must be one of the following forms. (In case $A^2_{e_2} = -3$, replace -4 by -3, in the following graphs.)

1. $\Gamma_1 \cup A_{e_1} \cup A_{e_2}$

2. $\Gamma_1 \cup A_{e_1} \cup A_{e_2}$

3. $\Gamma_1 \cup A_{e_1} \cup A_{e_2}$

4. $\Gamma_1 \cup A_{e_1} \cup A_{e_2}$

5. $\Gamma_1 \cup A_{e_1} \cup A_{e_2}$

6. $\Gamma_1 \cup A_{e_1} \cup A_{e_2}$
Proof. The proof is the same as that in Proposition 6.22. □

Theorem 6.25. Let \((V, p)\) be a germ of minimally elliptic singularity. Let \(\pi: M \to V\) be the minimal resolution of \(p\). If case (6) of Proposition 6.2 holds, i.e., if there exist two effective components \(A^*_1\) and \(A^*_2\) with \(A^*_1 = -3, A^*_2 = -4\) and \(z_1 = 2, z_2 = 1\), then the weighted dual graph \(\Gamma\) of the exceptional set is one of the following forms.

\[
(7) \quad \begin{array}{c}
A^*_1 \\
___ \\
___ \\
A^*_2
\end{array} \\
\begin{array}{c}
-3 \\
___ \\
___ \\
-4
\end{array}
\]

\[
Z \big|_{A^*_1 \cup A^*_2 \cup \Gamma_1} = 2\ 4\ 6\ 5\ 4\ 3\ 2\ 1
\]

\[
(8) \quad \begin{array}{c}
A^*_1 \\
___ \\
___ \\
A^*_2
\end{array} \\
\begin{array}{c}
-3 \\
___ \\
___ \\
-4
\end{array}
\]

\[
Z \big|_{A^*_1 \cup A^*_2 \cup \Gamma_1} = 2\ 5\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1
\]
Proof. If \(A_{s1} \cdot A_{s2} = 0 \), then the proof is similar to that of Theorem 6.23 by using Proposition 6.21, Proposition 6.24, and Proposition 6.17. We have case (1a) to case (8).

If \(A_{s1} \cdot A_{s2} \neq 0 \), then \(A_{s1} \cdot A_{s2} = 1 \). It follows that \(A_{s1} \cdot (Z - 2A_{s1} - A_{s2}) = -A_{s1} \cdot (K + 2A_{s1} + A_{s2}) = -A_{s1}^2 + 1 = 4 \). For \(4 = 1 + 1 + 1 + 1 \), we are in case (9). For \(4 = 1 + 1 + 2 \), we are in case (10). For \(4 = 1 + 3 \), we are in case (11), case (12) and case (13). For \(4 = 2 + 2 \), we are in case (15). For \(4 = 4 \), we are in case (16) and case (17).

Proposition 6.26. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z \). Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma \). Let \(A_{s1} \) and \(A_{s2} \) be two effective components of \(\Gamma \). Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to a rational double point graph in Theorem 4.2. Suppose also that \(\Gamma_1 \) intersects...
with both A_{s1} and A_{s2}, but with no other effective component. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_{s1} \cdot Z_1 = A_{s2} \cdot Z_1 = 1$. If $A_{s1} \cdot A_{s2} = 0$ and the coefficients z_{s1} of A_{s1} and z_{s2} of A_{s2} in Z are one and $A_{s1}^2 \leq -3$, $A_{s2}^2 \leq -3$, then $A_{s1} \cup A_{s2} \cup \Gamma_1$ and the restriction of Z on $A_{s1} \cup A_{s2} \cup \Gamma_1$ must be one of the following forms.

\begin{itemize}
 \item[(1)] \begin{tikzpicture}
 \node at (0,0) [circle,fill,inner sep=2pt] (v1) at (0,0) {};
 \node at (1,0) [circle,fill,inner sep=2pt] (v2) at (1,0) {};
 \node at (0,1) [circle,fill,inner sep=2pt] (v3) at (0,1) {};
 \node at (1,1) [circle,fill,inner sep=2pt] (v4) at (1,1) {};
 \draw (v1) -- (v2);
 \draw (v3) -- (v4);
 \end{tikzpicture}
 \hspace{1cm} Z_{A_{s1} \cup A_{s2} \cup \Gamma_1} = 1 \quad \ldots \quad 1
 \end{itemize}

$Proof$. The proof is the same as that in Proposition 6.24.

\begin{itemize}
 \item[(2)] \begin{tikzpicture}
 \node at (0,0) [circle,fill,inner sep=2pt] (v1) at (0,0) {};
 \node at (1,0) [circle,fill,inner sep=2pt] (v2) at (1,0) {};
 \node at (0,1) [circle,fill,inner sep=2pt] (v3) at (0,1) {};
 \node at (1,1) [circle,fill,inner sep=2pt] (v4) at (1,1) {};
 \draw (v1) -- (v2);
 \draw (v3) -- (v4);
 \end{tikzpicture}
 \hspace{1cm} Z_{A_{s1} \cup A_{s2} \cup \Gamma_1} = \frac{1}{2} \quad \ldots \quad 2 \quad 1
 \end{itemize}

$Theorem 6.27$. Let (V, p) be a germ of minimally elliptic singularity. Let $\pi: M \to V$ be the minimal resolution of p. If case (7) of Proposition 6.2 holds, i.e., if there exist two effective components A_{s1} and A_{s2} with $A_{s1}^2 = -4 = A_{s2}^2$ and $z_{s1} = 1 = z_{s2}$, then the weighted dual graph Γ of the exceptional set is one of the following forms.

\begin{itemize}
 \item[(1)] \begin{tikzpicture}
 \node at (0,0) [circle,fill,inner sep=2pt] (v1) at (0,0) {};
 \node at (1,0) [circle,fill,inner sep=2pt] (v2) at (1,0) {};
 \node at (0,1) [circle,fill,inner sep=2pt] (v3) at (0,1) {};
 \node at (1,1) [circle,fill,inner sep=2pt] (v4) at (1,1) {};
 \draw (v1) -- (v2);
 \draw (v3) -- (v4);
 \end{tikzpicture}
 \hspace{1cm} Z_{A_{s1} \cup A_{s2} \cup \Gamma_1} = \frac{1}{2} \quad 3 \quad 2 \quad 1
 \end{itemize}
Proposition 6.28. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z \). Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma \). Let \(A_{s1} \) and \(A_{s2} \) be two effective components of \(\Gamma \). Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to a rational double point graph in Theorem 4.2. Suppose also that \(\Gamma_1 \) intersects with \(A_{s1} \) and \(A_{s2} \), but is disjoint from other effective components. Let \(Z_1 \) be the fundamental cycle on \(\Gamma_1 \). Suppose that \(A_{s1} \cdot Z_1 = 1 = A_{s2} \cdot Z_1 \). If \(A_{s1} \cdot A_{s2} = 0 \), \(z_{s1} = 1 = z_{s2} \), and \(A_{s1}^2 = -3 \), \(A_{s2}^2 = -5 \), then \(A_{s1} \cup A_{s2} \cup \Gamma_1 \) and the restriction of \(Z \) on \(A_{s1} \cup A_{s2} \cup \Gamma_1 \) must be one of the following forms.

Proof. This follows from Proposition 5.3, Proposition 6.21 and Proposition 6.26. \(\square \)

<table>
<thead>
<tr>
<th>(A_{s1})</th>
<th>(A_{s2})</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-5</td>
<td>(Z \big</td>
</tr>
<tr>
<td>-3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-5</td>
<td>1</td>
</tr>
<tr>
<td>-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-5</td>
<td>1</td>
</tr>
<tr>
<td>-3</td>
<td>-5</td>
<td>1</td>
</tr>
</tbody>
</table>
Proof. The proof is the same as that in Proposition 6.26. □

Theorem 6.29. Let \((V, p)\) be a germ of minimally elliptic singularity. Let \(\pi : M \to V\) be the minimal resolution of \(p\). If case (8) of Proposition 6.2 holds, i.e., if there exist two effective components \(A_{s1}\) and \(A_{s2}\) with \(A_{s1}^2 = -3\), \(A_{s2}^2 = -5\) and \(z_{s1} = z_{s2} = 1\), then the weighted dual graph \(\Gamma\) of the exceptional set is one of the following forms.

\[
\begin{align*}
(1) & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-3 \quad A_{s1} \\
\end{array}
\end{array}
\end{array} & \quad Z = 1 \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}
\end{array}
\end{array}\right. \\
& \quad s \geq 0
\end{align*}
\]

\[
\begin{align*}
(2) & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-3 \quad A_{s1} \\
\end{array}
\end{array}
\end{array} & \quad Z = 1 \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}
\end{array}\right. \\
& \quad s \geq 0
\end{align*}
\]

\[
\begin{align*}
(3) & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-3 \quad A_{s1} \\
\end{array}
\end{array}
\end{array} & \quad Z = 1 \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}
\end{array}\right. \\
& \quad m \geq 0
\end{align*}
\]

\[
\begin{align*}
(4) & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-3 \quad A_{s1} \\
\end{array}
\end{array}
\end{array} & \quad Z = 1 \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}\right. \\
& \quad 2
\end{align*}
\]

\[
\begin{align*}
(5) & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-3 \quad A_{s1} \\
\end{array}
\end{array}
\end{array} & \quad Z = 1 \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}\right. \\
& \quad 2
\end{align*}
\]

Proof. This follows from Proposition 6.3, Proposition 6.21 and Proposition 6.28. □

Proposition 6.30. Let \(\Gamma\) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z\). Let \(\Gamma'\) be the subgraph of \(\Gamma\) obtained by removing all the effective components of \(\Gamma\). Let \(A_{s1}, A_{s2}\) and \(A_{s3}\) be three effective components of \(\Gamma\). Suppose that \(\Gamma_1\) is a connected component of \(\Gamma'\) which corresponds to a rational double point graph in Theorem 4.2. Suppose also that \(\Gamma_1\) intersects with \(A_{s1}, A_{s2}\) and \(A_{s3}\), but is disjoint from other effective components. Let \(Z_1\) be the fundamental cycle on \(\Gamma_1\). Suppose that \(A_{s1} \cdot Z_1 = 1 = A_{s2} \cdot Z_1 = A_{s3} \cdot Z_1\). If \(A_{s1}, A_{s2}\) and \(A_{s3}\) are mutually disjoint, \(z_{s1} = z_{s2}, z_{s3} = 2\), and \(A_{s1}^2 = -3 = A_{s2}^2 = A_{s3}^2\), then \(A_{s1} \cup A_{s2} \cup A_{s3} \cup \Gamma_1\) and the restriction of \(Z\) on \(A_{s1} \cup A_{s2} \cup A_{s3} \cup \Gamma_1\) must be one of the following forms.

\[
\begin{align*}
(1) & \quad \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
-3 \quad A_{s1} \\
\end{array}
\end{array}
\end{array} & \quad Z = 1 \left\{ \begin{array}{c}
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}\right. \\
& \quad 2
\end{align*}
\]
Proposition 6.31. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 1.2. Suppose also that Γ_1 intersects with A_* but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose $A_* \cdot Z_1 = 1$. If the coefficient z_* of A_* in Z is 2 and $A_*^2 = -3$, then $A_* \cup \Gamma_1$ and the restriction of Z on $A_* \cup \Gamma_1$ must be one of the following forms.

Proof. The proof is the same as that in Proposition 6.28. \qed

1. $A_* \cup \Gamma_1$

2. $A_* \cup \Gamma_1$

3. $A_* \cup \Gamma_1$

4. $A_* \cup \Gamma_1$

5. $A_* \cup \Gamma_1$

6. $A_* \cup \Gamma_1$

7. $A_* \cup \Gamma_1$

8. $A_* \cup \Gamma_1$
Proposition 6.32. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_{+1} and A_{+2} be two effective components of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 1.2. Suppose also that Γ_1 intersects with A_{+1} and A_{+2}, but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose that $A_{+1} \cdot Z_1 = 1 = A_{+2} \cdot Z_1$. If $A_{+1} \cdot A_{+2} = 0$, $z_{+1} = 2$, $z_{+2} = 1$ (coefficient of A_{+1} and A_{+2} in Z respectively), and $A_{+1}^2 = -3 = A_{+2}^3$, then $A_{+1} \cup A_{+2} \cup \Gamma_1$ and the restriction of Z on $A_{+1} \cup A_{+2} \cup \Gamma_1$ must be one of the following forms.

Proof. The proof is the same as that in Proposition 6.21. □
Theorem 6.33. Let (V, p) be a germ of minimally elliptic singularity. Let $\pi : M \to V$ be the minimal resolution of p. If case (9) of Proposition [4.2] holds, i.e., if there exist three effective components A_{1}, A_{2} and A_{3} with $A_{1} = A_{2}^{2} = A_{3} = -3$ and $z_{1} = z_{2} = 1$, $z_{3} = 2$, then the weighted dual graph Γ of the exceptional set is one of the following forms.

$$
\begin{align*}
(1) & \quad Z = \begin{bmatrix} 1 & 2 & 3 & 2 & \ldots & 2 \\ 1 & 2 & r & \geq & 0 & 1 \end{bmatrix} \\
(2) & \quad Z = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \\
(3) & \quad Z = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \\
(4) & \quad Z = \begin{bmatrix} 1 & 2 & \ldots & 2 & 1 \\ 1 & r & \geq & 0 & 1 \end{bmatrix} \\
(5) & \quad Z = \begin{bmatrix} 1 & 2 & \ldots & 2 \\ 1 & r_{1} & \geq & 0 & r_{2} \geq 1 & 1 \end{bmatrix} \\
(6) & \quad Z = \begin{bmatrix} 1 & 2 & \ldots & 2 \\ 1 & r & \geq & 0 & 2 & 1 \end{bmatrix} \\
(7) & \quad Z = \begin{bmatrix} 1 & 2 & \ldots & 2 \\ 1 & r & \geq & 0 & 3 & 4 & 3 & 2 & 1 \end{bmatrix} \\
(8) & \quad Z = \begin{bmatrix} 1 & 2 & \ldots & 2 \\ 1 & r & \geq & 0 & 3 & 4 & 5 & 6 & 4 & 2 \end{bmatrix} \\
(9) & \quad Z = \begin{bmatrix} 12 & 32 & \ldots & 2 \\ 12 & r & \geq & 0 & 1 \end{bmatrix}
\end{align*}
$$
Proof. Observe that $A_{s_1} \cdot (Z - A_{s_1}) = 2$ for $i = 1, 2$ and that $A_{s_3} \cdot (Z - 2A_{s_3}) = 2 - A_{s_3}^2 = 5$.

Also, by Lemma 6.6, A_{s_1} and A_{s_2} must be of degree one in Z. Otherwise Lemma 6.6 says that the Γ must be a circular graph and that will force $a_{s_3} = 1$, while we assume that $z_{s_3} = 2$. It follows that A_{s_3} intersects with every connected component of $\Gamma' = \Gamma - \{A_{s_1}, A_{s_2}, A_{s_3}\}$ and $A_{s_i}, i = 1, 2$, intersects with at most one connected component.

If A_{s_1}, A_{s_2} and A_{s_3} are mutually disjoint and they are all attached to the same connected component of Γ', by Proposition 6.30 and Proposition 6.31 we are in cases (1)–(8).

If A_{s_1}, A_{s_2} and A_{s_3} are mutually disjoint and they are not all attached to the same connected component of Γ', then A_{s_1} and A_{s_3} are both attached to a connected component of Γ', while A_{s_2} and A_{s_3} are both attached to another connected component. By Proposition 6.32 and Proposition 6.31 we are in case (9), (11) and (13).

If $A_{s_1} \cdot A_{s_3} = 0$ and $A_{s_2} \cdot A_{s_3} = 1$, then Γ' has only one connected component where A_{s_1} and A_{s_3} are both attached and A_{s_2} does not intersect with any connected component of Γ'. By Proposition 6.32 and Proposition 6.31 we are in case (9) with
If \(A_i \cdot A_{k3} = 1, i = 1, 2, \) then every connected component of \(\Gamma' \) must only intersect with \(A_{k3}. \) By Proposition 6.31 we are in case (4) with \(r = 0, \) case (5) with \(r_1 = 0, \) case (6), (7), (8) with \(r = 0, \) case (11) with \(r = 0 \) and case (12) with \(r_1 = 0. \)

Proposition 6.34. Let \(\Gamma \) be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle \(Z. \) Let \(\Gamma' \) be the subgraph of \(\Gamma \) obtained by removing all the effective components of \(\Gamma. \) Let \(A_{11}, A_{22} \) and \(A_{33} \) be three effective components of \(\Gamma. \) Suppose that \(\Gamma_1 \) is a connected component of \(\Gamma' \) which corresponds to a rational double point graph in Theorem 6.2. Suppose also that \(\Gamma_1 \) intersects with \(A_{11}, A_{22}, A_{33}, \) but is disjoint from other effective components. Let \(Z_1 \) be the fundamental cycle on \(\Gamma_1. \) Suppose that \(A_{11} \cdot Z_1 = 1 = A_{22} \cdot Z_1 = A_{33} \cdot Z_1. \) If \(A_{11}, A_{22}, \) and \(A_{33} \) are mutually disjoint, \(z_{11} = z_{22} = z_{33}, \) and \(A_{11}^2 \leq -3, A_{22}^2 \leq -3, A_{33}^2 \leq -3, \) then \(A_{11} \cup A_{22} \cup A_{33} \cup \Gamma_1 \) and the restriction of \(Z \) on \(A_{11} \cup A_{22} \cup A_{33} \cup \Gamma_1 \) must be one of the following forms.

Proof: The proof is the same as that in Proposition 6.30.

Theorem 6.35. Let \((V, p) \) be a germ of minimally elliptic singularity. Let \(\pi: M \rightarrow V \) be the minimal resolution of \(p. \) If case (10) of Proposition 6.2 holds, i.e., if there exist three effective components \(A_{11}, A_{22} \) and \(A_{33} \) with \(A_{11}^2 = A_{22}^2 = -3, A_{33}^2 = -4 \) and \(z_{11} = z_{22} = z_{33} = 1, \) then the weighted dual graph \(\Gamma \) of the exceptional set is one of the following forms.

<table>
<thead>
<tr>
<th>Case</th>
<th>(Z)</th>
<th>(Z_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2})</td>
<td>(\frac{1}{2}) (\frac{1}{2}) (\frac{1}{2})</td>
</tr>
</tbody>
</table>
Proposition 6.36. Let Γ be the minimal resolution graph of a minimally elliptic singularity with fundamental cycle Z. Let Γ' be the subgraph of Γ obtained by removing all the effective components of Γ. Let A_1, A_2, A_3 and A_4 be four effective components of Γ. Suppose that Γ_1 is a connected component of Γ' which corresponds to a rational double point graph in Theorem 4.2. Suppose also that Γ_1 intersects with A_1, A_2, A_3 and A_4, but is disjoint from other effective components. Let Z_1 be the fundamental cycle on Γ_1. Suppose that $A_1 \cdot Z_1 = 1 = A_2 \cdot Z_1 = A_3 \cdot Z_1 = A_4 \cdot Z_1$. If A_1, A_2, A_3 and A_4 are mutually disjoint, $z_1 = z_2 = z_3 = z_4 = 1$, and $A_{11} \leq -3, A_{12} \leq -3, A_{23} \leq -3, A_{24} \leq -3$, then $A_1 \cup A_2 \cup A_3 \cup A_4$ and the restriction of Z on $A_1 \cup A_2 \cup A_3 \cup A_4 \cup \Gamma_1$ must be one of the following forms.

Proof. The proof is the same as that in Proposition 6.32.

Theorem 6.37. Let (V, p) be a germ of minimally elliptic singularity. Let $\pi: M \to V$ be the minimal resolution of p. If case (11) of Proposition 6.32 holds, i.e., if there exist four effective components A_1, A_2, A_3 and A_4 with $A_{11} = -3 = A_{22} = A_{23} = A_{24}$ and $z_1 = z_2 = z_3 = z_4 = 1 = z_5$, then the weighted dual graph Γ of the exceptional set is one of the following forms.
7. Complete list of weighted dual graphs of minimally elliptic singularities with $Z^2 = -4$

In the following, we shall list all the weighted dual graphs of minimally elliptic singularities with $Z^2 = -4$ according to Proposition 6.2. Before we do this, we shall adopt the following notation, some of which was used by Laufer [La4]. The special cases of Proposition 3.7 where it is not true that the A_i are nonsingular rational curves with normal crossings, are described and named individually.

1. $\cdots \cdots r \cdots \cdots$ denotes $-\cdots -\bullet -\cdots -\bullet \cdots \cdots -\bullet$ with r vertices and $r + 1$ edges.
2. E_i is a nonsingular elliptic curve.
3. N_0 is a rational curve with a node singularity.
4. C_i is a rational curve with a cusp singularity.
5. T_a is a nonsingular rational curve which meet tangentially to first order.
6. T_r is a nonsingular rational curve which meet transversely at the same point.

Proof. This follows from Proposition 6.3, Proposition 6.21, Proposition 6.26, Proposition 6.32 and Proposition 6.34.

Each A_* is a nonsingular rational curve.
\[\begin{align*}
(7) & \quad A_{*,m,n} \\
(a) & \quad A_{*,0,1} \\
& \quad A_{*,0,2} \\
& \quad A_{*,0,3} \\
(b) & \quad A_{*,1,2} \\
& \quad A_{*,1,4} \\
& \quad A_{*,1,6} \\
(c) & \quad A_{*,2,3} \\
& \quad A_{*,2,6} \\
& \quad A_{*,2,9} \\
(d) & \quad A_{*,3,4} \\
& \quad A_{*,3,8} \\
(e) & \quad A_{*,4,5} \\
(f) & \quad A_{*,5,6} \\
(8) & \quad A_{**,n,m,\ell}
\end{align*} \]
CLASSIFICATION OF WEIGHTED DUAL GRAPHS

(a) $A_{\ast\ast,0,1,2}$

(b) $A_{\ast\ast,3,2,0}$

(c) $A_{\ast\ast,1,3,0}$

(d) $A_{\ast\ast,4,4,0}$

(e) $A_{\ast\ast,2,5,0}$

(f) $A_{\ast\ast,3,7,0}$

(g) $A_{\ast\ast,0,m,0}$
(9) $A_{\ast \ast \ast, m, n, k}$

(a) $A_{\ast \ast \ast, 1, 1, 0}$

(b) $A_{\ast \ast \ast, 1, n, 0}$

(c) $A_{\ast \ast \ast, 2, 2, 0}$

(d) $A_{\ast \ast \ast, 3, 3, 0}$

(e) $A_{\ast \ast \ast, 4, 4, 0}$

(f) $A_{\ast \ast \ast, 1, n, 1}$

(10) $A_{\ast \ast \ast \ast, m}$

(11) $D_{m, \ast}$

(12) $D'_{m, \ast}$

(a) $D'_{5, \ast}$

(b) $D'_{6, \ast}$
(c) D'_7, A

(d) D'_8, A

(e) D'_9, A

(f) D'_{10}, A

(g) D'_{11}, A

(h) D'_{12}, A

(13) D''_m, A

$\quad m - 3 \geq 1$

(14) $D_{m,**}$, A

$\quad m - 2 \geq 2$

(15) D''_5, A

(16) (a) D''_4, A

(b) D''_5, A

(17) (a) D'''_5, A
In the weighted dual graphs in the following tables, we may use \ast' or \circ to replace the \ast in graphs (1)–(24) above if it is necessary. Except in part I of the tables, at the beginning of each part of the tables, we will list values of $A_{\ast'} \cdot A_{\ast'}$, $A_{\circ'} \cdot A_{\circ'}$, $A_{\circ} \cdot A_{\circ}$, z_{\ast}, $z_{\ast'}$, and z_{\circ} when they are used in the dual graphs of that part.

Example 1. At the beginning of Table V, we give the values $A_{\ast} \cdot A_{\ast} = A_{\ast'} \cdot A_{\ast'} = -3$ and $z_{\ast} = z_{\ast'} = 2$. Therefore the notation $A_{\ast,0,1} + A_{\ast,0,1} + A_{\ast,\ast',0,1,2} + A_{\ast',0,1} + A_{\ast',0,1}$ denotes the weighted dual graph.
Example 2. At the beginning of Table VII, we give $A_s \cdot A_s = -4$, $A_{s'} \cdot A_{s'} = -3$, $z_s = 1$ and $z_{s'} = 2$. The notation $A_{s,s',m,0} + A_{s',0,1} + A_{s',0,1} + A_{s',0,1}$ denotes the graph

Example 3. At the beginning of Table X, we give $A_s \cdot A_s = A_{s'} \cdot A_{s'} = A_o \cdot A_o = -3$, $z_s = z_{s'} = 1$ and $z_o = 2$. The notation $A_{s,o,0,0} + A_{o,0,1} + A_{o,s',1,1,0}$ denotes the graph

The weighted dual graphs for minimally elliptic singularities with $Z \cdot Z = -4$.

I. The following graphs correspond to those exceptional cases in Proposition 3.7:

1. E_7
2. N_9
3. C_9
4. T_a
5. T_r
6. T_a
7. T_r
8. T_a
9. T_r
10. T_r

II. The following graphs correspond to those in Theorem 6.12:

1. $A_{s,0,1} + A_{s,0,3} + A_{s,0,3} + A_{s,0,3}$
2. $A_{s,0,1} + A_{s,0,3} + A_{s,1,0}$
3. $A_{s,0,1} + A_{s,2,9}$
4. $A_{s,0,3} + A_{s,0,3} + D_{6,1}$
5. $D_{5,1} + A_{s,1,6}$

TABLE

The weighted dual graphs for minimally elliptic singularities with $Z \cdot Z = -4$.
III. The following graphs correspond to those in Theorem 6.14
\(A_5 \cdot A_5 = -4 \), \(z_5 = 2 \).
1. \(A_5,0,1 + A_5,0,1 + A_5,0,1 + A_5,0,1 + A_5,0,1 \)
2. \(A_5,0,1 + A_5,0,1 + A_5,0,1 + A_5,0,1 + A_5,1,2 \)
3. \(A_5,0,1 + A_5,0,1 + A_5,0,1 + A_5,0,1 + D_{m_5,*} \)
4. \(A_5,0,1 + A_5,0,1 + A_5,0,1 + A_5,2,3 \)
5. \(A_5,0,1 + A_5,0,1 + A_5,0,1 + D_{6_5,*} \)
6. \(A_5,0,1 + A_5,0,1 + A_5,0,1 + E_{7,*} \)
7. \(A_5,1,2 + A_5,0,1 + A_5,0,1 + A_5,1,2 \)
8. \(D_{r_5,*} + A_5,0,1 + A_5,0,1 + A_5,1,2 \)
9. \(D_{r_5,*} + A_5,0,1 + A_5,0,1 + D_{s_5,*} \)
10. \(A_5,0,1 + A_5,0,1 + D_{6_5,*} \)
11. \(A_5,0,1 + A_5,0,1 + A_5,3,4 \)
12. \(A_5,1,2 + A_5,0,1 + A_5,2,3 \)
13. \(D_{m_5,*} + A_5,0,1 + A_5,2,3 \)
14. \(A_5,1,2 + A_5,0,1 + D_{6_5,*} \)
15. \(D_{m_5,*} + A_5,0,1 + D_{6_5,*} \)
16. \(A_5,1,2 + A_5,0,1 + E_{7,*} \)
17. \(D_{m_5,*} + A_5,0,1 + E_{7,*} \)
18. \(A_5,0,1 + A_5,4,5 \)
19. \(A_5,0,1 + D_{10,5,*} \)
20. \(A_5,1,2 + A_5,1,2 + A_5,1,2 \)
21. \(A_5,1,2 + A_5,1,2 + D_{m_5,*} \)
22. \(A_5,1,2 + D_{m_5,*} + D_{n_5,*} \)
23. \(D_{m_5,*} + D_{n_5,*} + D_{k_5,*} \)
24. \(A_5,1,2 + A_5,3,4 \)
25. \(D_{m_5,*} + A_5,3,4 \)
26. \(A_5,1,2 + D_{6_5,*} \)
27. \(D_{m_5,*} + D_{6_5,*} \)
28. \(A_5,2,3 + A_5,2,3 \)
29. \(A_5,2,3 + D_{6_5,*} \)
30. \(A_5,2,3 + E_{7,*} \)
31. \(D_{6_5,*} + D_{6_5,*} \)
32. \(D_{6_5,*} + E_{7,*} \)
33. \(E_{7,*} + E_{7,*} \)
34. \(A_5,5,6 \)
35. \(D_{12,*} \)

IV. The following graphs correspond to those in Theorem 6.16
\(A_5 \cdot A_5 = -6 \), \(z_5 = 1 \).
1. \(N_0, r \geq 1 \)
2. \(D_{m_5,*} \)
3. \(E_{6_5,*} \)
4. \(E_{7,*} \)
5. \(E_{8,*} \)
V. The following graphs correspond to those in Theorem 6.19

\[A_\ast \cdot A_\ast = A_\ast \cdot A_\ast' = -3, \quad z_\ast = z_\ast' = 2. \]

1. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,1,2} + A_{s',0,1} + A_{s',0,1} \]
2. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,1,2} + A_{s',1,2} \]
3. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,1,2} + D_{m,s'} \]
4. \[A_{s,1,2} + A_{s,s',0,1,2} + A_{s',1,2} \]
5. \[A_{s,1,2} + A_{s,s',0,1,2} + D_{m,s'} \]
6. \[D_{m,s} + A_{s,s',0,1,2} + D_{n,s'} \]
7. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',0,1} + A_{s',0,1} \]
8. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',0,1} + A_{s',1,2} \]
9. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',0,1} + D_{m,s'} \]
10. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',2,3} \]
11. \[A_{s,0,1} + A_{s,0,1} + A_{s,s',0,m,0} + D_{6,s'} \]
12. \[A_{s,1,2} + A_{s,0,1} + A_{s,s',0,m,0} + E_{7,s'} \]
13. \[A_{s,1,2} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',0,1} + A_{s',1,2} \]
14. \[D_{n,s} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',0,1} + A_{s',1,2} \]
15. \[D_{n,s} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',0,1} + D_{k,s'} \]
16. \[A_{s,1,2} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',2,3} \]
17. \[D_{n,s} + A_{s,0,1} + A_{s,s',0,m,0} + A_{s',2,3} \]
18. \[A_{s,1,2} + A_{s,0,1} + A_{s,s',0,m,0} + D_{6,s'} \]
19. \[D_{n,s} + A_{s,0,1} + A_{s,s',0,m,0} + D_{6,s'} \]
20. \[A_{s,1,2} + A_{s,0,1} + A_{s,s',0,m,0} + E_{7,s'} \]
21. \[D_{n,s} + A_{s,0,1} + A_{s,s',0,m,0} + E_{7,s'} \]
22. \[A_{s,2,3} + A_{s,s',0,m,0} + A_{s',2,3} \]
23. \[A_{s,2,3} + A_{s,s',0,m,0} + D_{6,s'} \]
24. \[A_{s,2,3} + A_{s,s',0,m,0} + E_{7,s'} \]
25. \[D_{6,s} + A_{s,s',0,m,0} + D_{6,s'} \]
26. \[D_{6,s} + A_{s,s',0,m,0} + E_{7,s'} \]
27. \[E_{7,s} + A_{s,s',0,m,0} + E_{7,s'} \]
28. \[A_{s,0,1} + A_{s,s',3,2,0} + A_{s',0,1} + A_{s',0,1} \]
29. \[A_{s,0,1} + A_{s,s',3,2,0} + A_{s',1,2} \]
30. \[A_{s,0,1} + A_{s,s',3,2,0} + D_{m,s'} \]
31. \[A_{s,s',4,3,0} + A_{s',0,1} + A_{s',0,1} \]
32. \[A_{s,s',4,3,0} + A_{s',1,2} \]
33. \[A_{s,s',4,3,0} + D_{m,s'} \]
34. \[A_{s,0,1} + A_{s,0,1} + D_{6,s,s'} + A_{s',0,1} + A_{s',0,1} \]
35. \[A_{s,0,1} + A_{s,0,1} + D_{6,s,s'} + D_{m,s'} \]
36. \[A_{s,0,1} + A_{s,0,1} + D_{6,s,s'} + A_{s',1,2} \]
37. \[D_{m,s} + D_{4,s,s'} + A_{s',1,2} \]
38. \[D_{m,s} + D_{4,s,s'} + D_{n,s'} \]
39. \[A_{s',1,2} + D_{6}^{s} \]
40. \[A_{s,0,1} + D_{6,s,s'} + A_{s',0,1} + A_{s',0,1} \]
41. \[A_{s,0,1} + D_{6,s,s'} + A_{s',1,2} \]
42. \[A_{s,0,1} + D_{6,s,s'} + D_{n,s'} \]
43. \[D_{8,s,s'} + A_{s',0,1} + A_{s',0,1} \]
44. \[D_{8,s,s'} + A_{s',1,2} \]
45. \[D_{8,s,s'} + D_{m,s'} \]
VI. The following graphs correspond to those in Theorem [6.23]
\[A_s \cdot A_s = A_{s'} \cdot A_{s'} = -3, \quad z_s = 3, \quad z_{s'} = 1. \]
1. \(A_{s,0,2} + A_{s,0,2} + A_{s,0,2} + A_{s,s',0,1,0} \)
2. \(A_{s,1,4} + A_{s,0,2} + A_{s,s',0,1,0} \)
3. \(E_{6,s} + A_{s,0,2} + A_{s,s',0,1,0} \)
4. \(A_{s,2,6} + A_{s,s',0,1,0} \)
5. \(A_{s,0,2} + A_{s,0,2} + A_{s,s',1,3,0} \)
6. \(A_{s,1,4} + A_{s,s',1,3,0} \)
7. \(E_{6,s} + A_{s,s',1,3,0} \)
8. \(A_{s,0,2} + A_{s,s',2,5,0} \)
9. \(A_{s,s',3,7,0} \)

VII. The following graphs correspond to those in Theorem [6.25]
\[A_s \cdot A_s = -3, \quad A_{s'} \cdot A_{s'} = -4, \quad z_s = 2, \quad z_{s'} = 1. \]
1. \(A_{s,0,1} + A_{s,0,1} + A_{s,0,1} + A_{s,s',1,1,0} \)
2. \(A_{s,1,2} + A_{s,0,1} + A_{s,s',1,1,0} \)
3. \(D_{n,s} + A_{s,0,1} + A_{s,s',1,1,0} \)
4. \(A_{s,2,3} + A_{s,s',1,1,0} \)
5. \(D'_{6,s} + A_{s,s',1,1,0} \)
6. \(E_{7,s} + A_{s,s',1,1,0} \)
7. \(A_{s,0,1} + A_{s,0,1} + A_{s,s',2,2,0} \)
8. \(A_{s,1,2} + A_{s,s',2,2,0} \)
9. \(D_{n,s} + A_{s,s',2,2,0} \)
10. \(A_{s,0,1} + A_{s,s',3,3,0} \)
11. \(A_{s,s',4,4,0} \)
12. \(A_{s,0,1} + A_{s,0,1} + A_{s,0,1} + A_{s,s',0,m,1} \)
13. \(A_{s,1,2} + A_{s,0,1} + A_{s,s',0,m,1} \)
14. \(D_{n,s} + A_{s,0,1} + A_{s,s',0,m,1} \)
15. \(A_{s,2,3} + A_{s,s',0,m,1} \)
16. \(D''_{6,s} + A_{s,s',0,m,1} \)
17. \(E_{7,s} + A_{s,s',0,m,1} \)
18. \(A_{s,0,1} + A_{s,0,1} + D'''_{5,s,s'} \)
19. \(A_{s,1,2} + D'''_{5,s,s'} \)
20. \(D_{n,s} + D'''_{5,s,s'} \)
21. \(A_{s,0,1} + D'''_{5,s,s'} \)
22. \(D'''_{9,s,s'} \)
23. \(A_{s,0,1} + A_{s,0,1} + A_{s,0,1} + A_{s,s',0,0,0} \)
24. \(A_{s,1,2} + A_{s,0,1} + A_{s,0,1} + A_{s,s',0,0,0} \)
25. \(D_{n,s} + A_{s,0,1} + A_{s,0,1} + A_{s,s',0,0,0} \)
26. \(A_{s,2,3} + A_{s,0,1} + A_{s,s',0,0,0} \)
27. \(D''_{6,s} + A_{s,0,1} + A_{s,s',0,0,0} \)
28. \(E_{7,s} + A_{s,0,1} + A_{s,s',0,0,0} \)
29. \(A_{s,1,2} + A_{s,1,2} + A_{s,s',0,0,0} \)
30. \(D_{n,s} + A_{s,1,2} + A_{s,s',0,0,0} \)
31. \(D_{n,s} + D_{m,s} + A_{s,s',0,0,0} \)
32. \(A_{s,3,4} + A_{s,s',0,0,0} \)
33. \(D'_{6,s} + A_{s,s',0,0,0} \)
VIII. The following graphs correspond to those in Theorem 6.27
\[A_s \cdot A_s = A_{s'} \cdot A_{s'} = -4, z_s = z_{s'} = 1. \]
1. No
2. \(A_{s',1,m,1}\)
3. \(A_{s',1,1,1}\)
4. \(D_{m,s',s'}\)
5. \(D_{5,s',s'}\)
6. \(E_{6,s',s'}\)

IX. The following graphs correspond to those in Theorem 6.29
\[A_s \cdot A_s = -3, A_{s'} \cdot A_{s'} = -5, z_s = z_{s'} = 1, z_o = 2. \]
1. No
2. \(A_{s',1,m,1}\)
3. \(D_{m,s',s',m} \geq 4\)
4. \(D_{5,s',s'}\)
5. \(E_{6,s',s'}\)

X. The following graphs correspond to those in Theorem 6.33
\[A_s \cdot A_s = A_{s'} \cdot A_{s'} = A_o \cdot A_o = -3, z_s = z_{s'} = 1, z_o = 2. \]
1. \(A_{s',2,2,0} + A_{o,1,2}\)
2. \(A_{s',2,2,0} + D_{n,o}\)
3. \(A_{s',3,3,0} + A_{o,0,1}\)
4. \(A_{s',4,4,0}\)
5. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,0,1} + A_{o,0,1} + A_{o,0,1}\)
6. \(A_{s',1,n,0} + A_{o,0,1} + A_{o,0,1} + A_{o,0,1}\)
7. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,0,1} + A_{o,1,2}\)
8. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,0,1} + D_{n,o}\)
9. \(A_{s',1,n,0} + A_{o,0,1} + A_{o,1,2}\)
10. \(A_{s',1,n,0} + A_{o,0,1} + D_{n,o}\)
11. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,2,3}\)
12. \(A_{s',2,2,0} + A_{o,0,1}\)
13. \(A_{s',2,2,0} + D_{6,o}\)
14. \(A_{s',1,n,0} + D'_{6,o}\)
15. \(A_{s',0,0,0} + A_{s',0,0,0} + E_{7,o}\)
16. \(A_{s',1,n,0} + E_{7,o}\)
17. \(A_{s',0,2,2} + A_{s',0,0,0} + A_{o,0,1}\)
18. \(A_{s',0,2,2} + A_{o,0,0,1}\)
19. \(A_{s',0,3,3} + A_{o,0,0,0}\)
20. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,0,1} + A_{o,0,1} + A_{o,0,1}\)
21. \(A_{s',0,0,0} + A_{o,0,1} + A_{o,0,1} + A_{o,0,0,1}\)
22. \(A_{s',1,m,0} + A_{o,0,1} + A_{o,0,1}\)
23. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,0,1} + A_{o,1,2}\)
24. \(A_{s',0,0,0} + A_{s',0,0,0} + A_{o,0,1} + D_{n,o}\)
25. \(A_{s',1,m,0} + A_{s',0,0,0} + A_{o,1,2}\)
26. \(A_{s',1,m,0} + A_{s',0,0,0} + D_{n,o}\)
27. \(A_{s',0,0,0} + A_{o,0,1} + D'_{5,o,s'}\)
28. \(A_{s',1,m,0} + D'_{5,o,s'}\)
29. \(A_{s',0,0,0} + A_{o,0,3,3,0}\)
30. \(A_{s',0,0,0} + D''_{5,o,s'}\)
XI. The following graphs correspond to those in Theorem 6.35.

\[A_*, A_0 = A_*, A_* = -3, \quad A_0 \cdot A_* = -4, \quad z_* = z_*' = z_0 = 1. \]

1. \(A_*, A_*' = A_*, n \geq 1 \)
2. \(A_*, A_*', n, n \geq 1 \)
3. \(D_*, A_*, A_*' \)
4. \(N(0) \)

XII. The following graphs correspond to those in Theorem 6.37.

\[A_*, A_0 = -3, \quad z_* = 1 \text{ for all four effective components.} \]

1. \(N \)
2. \(A_*, A_*, A_*, A_*', m, m \geq 1 \)

References