Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stable functions and common stabilizations of Heegaard splittings


Author: Jesse Johnson
Journal: Trans. Amer. Math. Soc. 361 (2009), 3747-3765
MSC (2000): Primary 57Mxx
DOI: https://doi.org/10.1090/S0002-9947-09-04731-X
Published electronically: March 4, 2009
MathSciNet review: 2491898
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new proof of Reidemeister and Singer's Theorem that any two Heegaard splittings of the same 3-manifold have a common stabilization. The proof leads to an upper bound on the minimal genus of a common stabilization in terms of the number of negative slope inflection points and type two cusps in a Rubinstein-Scharlemann graphic for the two splittings.


References [Enhancements On Off] (What's this?)

  • 1. David Bachman and Saul Schleimer, Surface bundles versus Heegaard splittings, preprint (2002). MR 2216145 (2006m:57027)
  • 2. Jean Cerf, La stratefacation naturelle des especes de fonctions differentiables reeles et la theoreme de la isotopie, Publ. Math. I.H.E.S. 39 (1970).
  • 3. Francesco Costantino and Dylan P. Thurston, 3-manifolds efficiently bound 4-manifolds, preprint (2005).
  • 4. H. Edelsbrunner, Jacobi sets of multiple Morse functions, Foundations of computational mathematics: Minneapolis, 2002, Cambridge University Press, 2004, pp. 35-57. MR 2189626 (2006j:58014)
  • 5. M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, 1973. MR 0341518 (49:6269)
  • 6. A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), no. 3, 221-237. MR 579573 (81k:57008)
  • 7. Jesse Johnson, Heegaard splittings and the pants complex, Algebr. Geom. Topol. 6 (2006), 853-874. MR 2240918 (2007k:57039)
  • 8. Tsuyoshi Kobayashi and Osamu Saeki, The Rubinstein-Scharlemann graphic of a 3-manifold as the discriminant set of a stable map, Pacific Journal of Mathematics 195 (2000), no. 1, 101-156. MR 1781617 (2001i:57026)
  • 9. H. Levine, Classifying immersions into $ \mathbf{R}^4$ over stable maps of 3-manifolds into $ \mathbf{R}^2$, Springer-Verlag, 1980. MR 814689 (88f:57056)
  • 10. J. Mather, Stability of $ C^\infty$ mappings V, Advances in Mathematics 4 (1970), no. 3, 301-336. MR 0275461 (43:1215c)
  • 11. J. Milnor, Morse theory, Annals of Mathematics Studies, no. 51, Princeton University Press, 1963. MR 0163331 (29:634)
  • 12. A. Du Plessis and T. Wall, The geometry or topological stability, Oxford Science Publications, 1995. MR 1408432 (97k:58024)
  • 13. K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 11 (1933), 189-194.
  • 14. Hyam Rubinstein and Martin Scharlemann, Comparing Heegaard splittings of non-Haken 3-manifolds, Topology 35 (1996), no. 4, 1005-1026. MR 1404921 (97j:57021)
  • 15. -, Transverse Heegaard splittings, Michigan Math. J. 44 (1997), no. 1, 69-83. MR 1439669 (98c:57017)
  • 16. Jennifer Schultens, Heegaard splittings of Seifert fibered spaces with boundary, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2533-2552. MR 1297537 (95j:57019)
  • 17. J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), 88-111. MR 1501673
  • 18. Friedhelm Waldhausen, Heegaard-Zerlegungen der $ 3$-Sphäre, Topology 7 (1968), 195-203. MR 0227992 (37:3576)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57Mxx

Retrieve articles in all journals with MSC (2000): 57Mxx


Additional Information

Jesse Johnson
Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
Email: jessee.johnson@yale.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04731-X
Keywords: Heegaard splitting, stabilization, Rubinstein-Scharlemann graphic
Received by editor(s): May 30, 2007
Published electronically: March 4, 2009
Additional Notes: This research was supported by NSF MSPRF grant 0602368
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society