The lower central and derived series of the braid groups of the sphere

Authors:
Daciberg Lima Gonçalves and John Guaschi

Journal:
Trans. Amer. Math. Soc. **361** (2009), 3375-3399

MSC (2000):
Primary 20F36, 20F14; Secondary 20F05, 55R80, 20E26

DOI:
https://doi.org/10.1090/S0002-9947-09-04766-7

Published electronically:
March 3, 2009

MathSciNet review:
2491885

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we determine the lower central and derived series for the braid groups of the sphere. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is important in its own right.

The braid groups of the -sphere were studied by Fadell, Van Buskirk and Gillette during the 1960s, and are of particular interest due to the fact that they have torsion elements (which were characterised by Murasugi). We first prove that for all , the lower central series of the -string braid group is constant from the commutator subgroup onwards. We obtain a presentation of , from which we observe that is a semi-direct product of the quaternion group of order by a free group of rank . As for the derived series of , we show that for all , it is constant from the derived subgroup onwards. The group being finite and soluble for , the critical case is for which the derived subgroup is the above semi-direct product . By proving a general result concerning the structure of the derived subgroup of a semi-direct product, we are able to determine completely the derived series of which from onwards coincides with that of the free group of rank , as well as its successive derived series quotients.

**1.**E. Artin,*Theorie der Zöpfe*, Abh. Math. Sem. Univ. Hamburg**4**(1925), 47-72.**2.**-,*Theory of braids*, Ann. Math.**48**(1947), 101-126. MR**0019087 (8:367a)****3.**-,*Braids and permutations*, Ann. Math.**48**(1947), 643-649. MR**0020989 (9:6c)****4.**P. Bellingeri, S. Gervais and J. Guaschi,*Lower central series of Artin-Tits and surface braid groups*, J. Algebra**319**(2008), 1409-1427. MR**2383053****5.**J. S. Birman,*On braid groups*, Comm. Pure and Appl. Math.**22**(1969), 41-72. MR**0234447 (38:2764)****6.**-,*Braids, links and mapping class groups*, Ann. Math. Stud.**82**, Princeton University Press, 1974. MR**0375281 (51:11477)****7.**-,*Mapping class groups of surfaces*, in Braids (Santa Cruz, CA, 1986), 13-43, Contemp. Math.**78**, Amer. Math. Soc., Providence, RI, 1988. MR**975076 (90g:57013)****8.**K. S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics,**87**, Springer-Verlag, New York, 1982. MR**672956 (83k:20002)****9.**G. Burde and H. Zieschang,*Knots*, Second edition, de Gruyter Studies in Mathematics,**5**. Walter de Gruyter & Co., Berlin, 2003. MR**1959408 (2003m:57005)****10.**F. R. Cohen and S. Gitler,*On loop spaces of configuration spaces*, Trans. Amer. Math. Soc.**354**(2002), 1705-1748. MR**1881013 (2002m:55020)****11.**E. Fadell,*Homotopy groups of configuration spaces and the string problem of Dirac*, Duke Math. Journal**29**(1962), 231-242. MR**0141127 (25:4538)****12.**E. Fadell and S. Y. Husseini,*Geometry and topology of configuration spaces*, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2001. MR**1802644 (2002k:55038)****13.**E. Fadell and L. Neuwirth,*Configuration spaces*, Math. Scandinavica**10**(1962), 111-118. MR**0141126 (25:4537)****14.**E. Fadell and J. Van Buskirk,*The braid groups of and*, Duke Math. Journal**29**(1962), 243-257. MR**0141128 (25:4539)****15.**M. Falk and R. Randell,*The lower central series of a fiber-type arrangement*, Invent. Math.**82**(1985), 77-88. MR**808110 (87c:32015b)****16.**-,*The lower central series of generalized pure braid groups*, in Geometry and topology (Athens, Ga., 1985), 103-108, Lecture Notes in Pure and Appl. Math.**105**, Dekker, New York, 1987. MR**873287 (88c:20048)****17.**-,*Pure braid groups and products of free groups*, in Braids (Santa Cruz, CA, 1986), 217-228, Contemp. Math.**78**, Amer. Math. Soc., Providence, RI, 1988. MR**975081 (90d:20070)****18.**R. H. Fox and L. Neuwirth,*The braid groups*, Math. Scandinavica**10**(1962), 119-126. MR**0150755 (27:742)****19.**R. Gillette and J. Van Buskirk,*The word problem and consequences for the braid groups and mapping class groups of the -sphere*, Trans. Amer. Math. Soc.**131**(1968), 277-296. MR**0231894 (38:221)****20.**D. L. Gonçalves and J. Guaschi,*On the structure of surface pure braid groups*, J. Pure Appl. Algebra**182**(2003), 33-64 (due to a printer's error, this article was republished in its entirety in**186**(2004), 187-218). MR**1977999 (2004i:20068)****21.**-,*The roots of the full twist for surface braid groups*, Math. Proc. Camb. Phil. Soc.**137**(2004), 307-320. MR**2092062 (2005i:20060)****22.**-,*The braid groups of the projective plane*, Algebraic and Geometric Topology**4**(2004), 757-780. MR**2100679 (2005j:20040)****23.**-,*The braid group and the generalised Fadell-Neuwirth short exact sequence*, J. Knot Theory and its Ramifications**14**(2005), 375-403. MR**2149513 (2006b:20052)****24.**-,*The quaternion group as a subgroup of the sphere braid groups*, Bull. London Math. Soc.**39**(2007), 232-234. MR**2323453 (2008b:20041)****25.**-,*The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence*, Geom. Dedicata**130**(2007), 93-107. MR**2365780****26.**-,*The classification and the conjugacy classes of the finite subgroups of the sphere braid groups*, Algebraic and Geometric Topology**8**(2008), 757-785.**27.**-,*The lower central and derived series of the braid groups of the finitely-punctured sphere*, to appear in J. Knot Theory and its Ramifications.**28.**-,*Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane*, preprint October 2007,`arXiv:math.GT/0710.5940`.**29.**-,*Classification of the virtually cyclic subgroups of the sphere braid groups*, work in progress.**30.**-,*Classification of the finite and virtually cyclic subgroups of the braid groups of the projective plane*, work in progress.**31.**J. González-Meneses and L. Paris,*Vassiliev invariants for braids on surfaces*, Trans. Amer. Math. Soc.**356**(2004), 219-243. MR**2020030 (2004m:20073)****32.**E. A. Gorin and V Ja. Lin,*Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids*, Math. USSR Sbornik**7**(1969), 569-596.**33.**M. Hall,*The theory of groups*, Macmillan, New York, 1959. MR**0103215 (21:1996)****34.**V. L. Hansen,*Braids and Coverings: Selected topics*, London Math. Society Student Text,**18**, Cambridge University Press, 1989. MR**1247697 (94g:57004)****35.**P. Hilton, G. Mislin and L. Roitberg,*Localization of nilpotent groups and spaces*, North-Holland Mathematics Studies, No. 15, Notas de Matemática, No. 55, North-Holland Publishing Co., Amsterdam, 1975. MR**0478146 (57:17635)****36.**T. Kohno,*Série de Poincaré-Koszul associée aux groupes de tresses pures*, Invent. Math.**82**(1985), 57-75. MR**808109 (87c:32015a)****37.**W. Magnus, A. Karrass and D. Solitar,*Combinatorial group theory*, Second revised edition, Dover Publications, Inc., New York, 1976. MR**0422434 (54:10423)****38.**K. Murasugi,*Seifert fibre spaces and braid groups*, Proc. London Math. Soc.**44**(1982), 71-84. MR**642793 (83f:57007)****39.**L. Paris and D. Rolfsen,*Geometric subgroups of surface braid groups*, Ann. Inst. Fourier**49**(1999), 417-472. MR**1697370 (2000f:20059)****40.**D. Rolfsen,*New developments in the theory of Artin's braid groups*, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop `Invariants of Three-Manifolds' (Calgary, AB, 1999), Topology and its Applications**127**(2003), 77-90. MR**1953321 (2004f:20070)****41.**G. P. Scott,*Braid groups and the group of homeomorphisms of a surface*, Proc. Camb. Phil. Soc.**68**(1970), 605-617. MR**0268889 (42:3786)****42.**J. Stallings,*Homology and central series of groups*, J. Algebra**2**(1965), 170-181. MR**0175956 (31:232)****43.**J. G. Thompson,*Note on*, Comm. Algebra**22**(1994), 5683-5687. MR**1298742 (95h:20048)****44.**J. Van Buskirk,*Braid groups of compact -manifolds with elements of finite order*, Trans. Amer. Math. Soc.**122**(1966), 81-97. MR**0189013 (32:6440)****45.**O. Zariski,*On the Poincaré group of rational plane curves*, Amer. J. Math.**58**(1936), 607-619. MR**1507185****46.**-,*The topological discriminant group of a Riemann surface of genus*, Amer. J. Math.**59**(1937), 335-358. MR**1507244**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20F36,
20F14,
20F05,
55R80,
20E26

Retrieve articles in all journals with MSC (2000): 20F36, 20F14, 20F05, 55R80, 20E26

Additional Information

**Daciberg Lima Gonçalves**

Affiliation:
Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de Saõ Paulo, Caixa Postal 66281, Ag. Cidade de São Paulo, CEP: 05314-970, São Paulo, SP, Brazil

Email:
dlgoncal@ime.usp.br

**John Guaschi**

Affiliation:
Laboratoire de Mathématiques Emile Picard, UMR CNRS 5580, UFR-MIG, Université Toulouse III, 31062 Toulouse Cedex 9, France

Address at time of publication:
Laboratoire de Mathématiques Nicolas Oresme, UMR CNRS 6139, Université de Caen BP 5186, 14032 Caen Cedex, France

Email:
guaschi@math.unicaen.fr

DOI:
https://doi.org/10.1090/S0002-9947-09-04766-7

Keywords:
Surface braid group,
sphere braid group,
lower central series,
derived series,
configuration space,
exact sequence

Received by editor(s):
April 15, 2006

Published electronically:
March 3, 2009

Article copyright:
© Copyright 2009
American Mathematical Society