Growth of Lebesgue constants for convex polyhedra and other regions

Authors:
J. Marshall Ash and Laura De Carli

Journal:
Trans. Amer. Math. Soc. **361** (2009), 4215-4232

MSC (2000):
Primary 42B15, 42A05; Secondary 42B08, 42A45

DOI:
https://doi.org/10.1090/S0002-9947-09-04627-3

Published electronically:
March 4, 2009

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any convex polyhedron in , , and , there are constants and such that

**[A]**J. M. Ash,*Triangular Dirichlet kernels and growth of**Lebesgue constants,*preprint.**[AAJRS]**B. Anderson, J. M. Ash, R. Jones, D. G. Rider, B. Saffari,*Exponential sums with coefficients*0*or**and concentrated**norms,*to appear in Annales de l'Institut Fourier.**[C]**C. K. Chui, An introduction to wavelets. Wavelet Analysis and its Applications, 1. Academic Press, Inc., Boston, MA, 1992. MR**1150048 (93f:42055)****[E]**A. Erdélyi et al., Higher transcendental functions. Vol. II. Based, in part, on notes left by Harry Bateman. McGraw-Hill, New York-Toronto-London, 1953. Page 85, 7.13.1(3).**[GKP]**R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science. Second edition. Addison-Wesley Publishing Company, Reading, MA, 1994. MR**1397498 (97d:68003)****[I]**V. A. Ilyin,*Problems of localization and convergence for Fourier series in fundamental systems of the Laplace operator,*Uspekhi Mat. Nauk**23**(1968), 61-120. (Translation in Russian Mathematical Surveys**23**, 59-116.) MR**0223823 (36:6870)****[K]**A. Ya. Khinchin, Continued Fractions, Nauka, Moscow (1978). Also translated from the third (1961) Russian edition. Reprint of the 1964 translation. Dover Publications, Inc., Mineola, NY, 1997. MR**1451873 (98c:11008)****[L]**E. R. Liflyand,*Lebesgue constants of multiple Fourier series,*Online Journal of Analytic Combinatorics, Issue 1 (2006), # 5, 1-112. MR**2249993 (2007g:42017)****[NP]**F. L. Nazarov and A. N. Podkorytov,*On the behavior of the Lebesgue constants of two-dimensional Fourier sums over polygons,*St. Petersburg Math. J.**7**(1996), 663-680. MR**1356537 (96m:42019)****[NZ]**Niven and Zuckerman, An introduction to the theory of numbers, 3rd edition, Wiley, 1972. MR**0344181 (49:8921)****[Sh]**H. S. Shapiro,*Lebesgue constants for spherical partial sums,*J. of Approximation theory**13**(1975), 40-44. MR**0374808 (51:11004)****[S]**E M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993, pp. 362-363. MR**1232192 (95c:42002)****[SW]**E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32. Princeton Univ. Press, Princeton, N.J., 1971. MR**0304972 (46:4102)****[TB]**R. M. Trigub and E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer Academic Publishers, Dordrecht, 2004. MR**2098384 (2005k:42002)****[Y]**V. A. Yudin,*Behavior of Lebesgue constants,*Translated from Matematicheskie Zametki,**17**(1975), 401-405. (Translation is in Mathematical Notes**17**on pages 233-235.) MR**0417690 (54:5739)****[YY]**A. A. Yudin and V. A. Yudin,*Polygonal Dirichlet kernels and growth of Lebesgue constants,*Translated from Matematicheskie Zametki,**37**(1985), 220-236. (Translation is in Mathematical Notes**37**on pages 124-135.) MR**784367 (86k:42039)****[Z]**A. Zygmund, Trigonometric Series, v.1, 2nd ed., Cambridge University Press, New York, 1959. MR**0107776 (21:6498)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
42B15,
42A05,
42B08,
42A45

Retrieve articles in all journals with MSC (2000): 42B15, 42A05, 42B08, 42A45

Additional Information

**J. Marshall Ash**

Affiliation:
Department of Mathematics, DePaul University, Chicago, Illinois 60614

Email:
mash@math.depaul.edu

**Laura De Carli**

Affiliation:
Department of Mathematics, Florida International University, University Park, Miami, Florida 33199

Email:
decarlil@fiu.edu

DOI:
https://doi.org/10.1090/S0002-9947-09-04627-3

Keywords:
Lebesgue constant,
Dirichlet kernel,
kernels for convex sets,
kernels for polyhedra

Received by editor(s):
January 16, 2007

Received by editor(s) in revised form:
August 3, 2007

Published electronically:
March 4, 2009

Additional Notes:
The first author’s research was partially supported by a grant from the Faculty and Development Program of the College of Liberal Arts and Sciences, DePaul University

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.