A DICHOTOMY CHARACTERIZING ANALYTIC DIGRAPHS OF UNCOUNTABLE BOREL CHROMATIC NUMBER IN ANY DIMENSION

DOMINIQUE LECOMTE

Abstract. We study the extension of the Kechris-Solecki-Todorčević dichotomy on analytic graphs to dimensions higher than 2. We prove that the extension is possible in any dimension, finite or infinite. The original proof works in the case of the finite dimension. We first prove that the natural extension does not work in the case of the infinite dimension, for the notion of continuous homomorphism used in the original theorem. Then we solve the problem in the case of the infinite dimension. Finally, we prove that the natural extension works in the case of the infinite dimension, but for the notion of Baire-measurable homomorphism.

1. Introduction

The reader should refer to [K] for the standard descriptive set-theoretic notation used in this paper. We study a definable coloring problem, in any dimension. We will need some more notation:

Notation. In this paper, $2 \leq d \leq \omega$ will be a cardinal, i.e., any dimension of an actual product making sense in the context of descriptive set theory. The letters X, Y will refer to some sets. We set

$$\Delta_d^d(X) := \{(x_i)_{i \in d} \in X^d \mid \forall i \in d \ x_i = x_0\}.$$

Definition 1.1. Let $A \subseteq X^d$. We say that A is a digraph if $A \cap \Delta^d(X) = \emptyset$.

Notation. Let $u: X \to Y$ be a map. We define a map $u^d: X^d \to Y^d$ by

$$u^d[(x_i)_{i \in d}] := [u(x_i)]_{i \in d}.$$

Definition 1.2. Let $A \subseteq X^d$ be a digraph.

(a) A coloring of $[X, A]$ is a map $c: X \to Y$ such that $A \cap (c)^{-1}[\Delta^d(Y)] = \emptyset$.

(b) Assume that X is a Polish space. The Borel chromatic number of $[X, A]$ is

$$\chi_B(A) := \min\{ \text{Card}(Y) \mid Y \text{ is a Polish space and there is a Borel coloring } c: X \to Y \text{ of } [X, A] \}.$$
The goal of this paper is to characterize the analytic digraphs of uncountable Borel chromatic number. This has been done in [K-S-T] for graphs, i.e., for symmetric digraphs, when $d = 2$. We will give such a characterization in terms of the following notion of comparison between relations.

Notation. Assume that X, Y are Polish spaces, and let A (resp., B) be a subset of X^d (resp., Y^d). We set

$$[X, A] \leq_B [Y, B] \iff \exists u : X \to Y \text{ Borel with } A \subseteq (u^d)^{-1}(B).$$

In this case, we say that u is a Borel homomorphism from $[X, A]$ into $[Y, B]$. This notion essentially makes sense for digraphs (we can take u to be constant if B is not a digraph). If u is continuous (resp., Baire-measurable, arbitrary), then we write \preceq (resp., \preceq_B, \preceq) instead of \leq_B. Note that $\chi_B(A) \leq \omega$ is equivalent to $[X, A] \preceq_B [\omega, \neg \Delta^2(\omega)]$.

We also have to introduce minimum digraphs of uncountable Borel chromatic number:

- Let $\psi_d: \omega \to d^{<\omega}$ be the natural bijection, for $d \leq \omega$. More specifically,
 - If $d < \omega$, then $\psi_d(0) := \emptyset$ is the sequence of length 0, $\psi_d(1) := 0$, \ldots, $\psi_d(d) := d - 1$ are the sequences of length 1, and so on.
 - If $d = \omega$, then let $(p_n)_{n \in \omega}$ be the sequence of prime numbers, and $I: \omega^{<\omega} \to \omega$ defined by $I(\emptyset) := 1$, and $I(s) := p_0^{s(0)+1} \ldots p_{|s|-1}^{s(|s|-1)+1}$ if $s \neq \emptyset$. Note that I is one-to-one, so that there is an increasing bijection $\varphi: \text{Seq} := I[\omega^{<\omega}] \to \omega$. If $t \in \text{Seq} \subseteq \omega$, then we will denote $T := I^{-1}(t) \in \omega^{<\omega}$. We set $\psi_\omega := (\varphi \circ I)^{-1}: \omega \to \omega^{<\omega}$. Note that ψ_ω is a bijection.
- Note also that $|\psi_d(n)| \leq n$ if $n \in \omega$. Indeed, this is clear if $d < \omega$. If $d = \omega$, then

$$I[\psi_d(n)(0)] < I[\psi_d(n)(1)] < \ldots < I[\psi_d(n)],$$

so that $(\varphi \circ I)[\psi_\omega(n)(0)] < (\varphi \circ I)[\psi_\omega(n)(1)] < \ldots < (\varphi \circ I)[\psi_\omega(n)] = n$. This implies that $|\psi_\omega(n)| \leq n$.

- Let $n \in \omega$. As $|\psi_d(n)| \leq n$, we can define $s_n^d := \psi_d(n)^{0n - |\psi_d(n)|}$. The crucial properties of the sequence $(s_n^d)_{n \in \omega}$ are the following:

 - For each $s \in d^{<\omega}$, there is $n \in \omega$ such that $s \subseteq s_n^d$ (we say that $(s_n^d)_{n \in \omega}$ is dense in $d^{<\omega}$).
 - $|s_n^d| = n$.
- We put

$$A_d := \{(s_n^d)_{i \in d} : n \in \omega \text{ and } \gamma \in d^\gamma\} \subseteq (d^\omega)^d.$$

Note that $A_d \in \Sigma^1_1$ since the map $(n, \gamma) \mapsto (s_n^d)_{i \in d}$ is continuous.

The previous definitions were given, when $d = 2$, in [K-S-T], where the following is proved.

Theorem 1.3 (Kechris, Solecki, Todorčević). Let X be a Polish space, and A in $\Sigma^1_1(X^2)$. Then exactly one of the following holds:

(a) $[X, A] \preceq_B [\omega, \neg \Delta^2(\omega)]$.

(b) $[2^\omega, A_d] \preceq_c [X, A]$.

This result can be extended to any finite dimension d, with the same proof.

Theorem 1.4. Let $d \geq 2$ be an integer, X a Polish space, and A in $\Sigma^1_1(X^d)$. Then exactly one of the following holds:

(a) $[X, A] \preceq_B [\omega, \neg \Delta^d(\omega)]$,

(b) $[d^\omega, A_d] \preceq_c [X, A]$.
We want to study the case of the infinite dimension.

Theorem 1.5. We cannot extend Theorem 1.4 to the case where $d = \omega$.

Notation. In order to get a positive result in the case of the infinite dimension, we put

$$G := \{ \alpha \in \omega^\omega \mid \forall m \in \omega \ \exists n \geq m \ \ s_n^d 0 \subseteq \alpha \}.$$

Note that G is a dense G_δ subset of ω^ω.

The main result of this paper is the following:

Theorem 1.6. Let X be a Polish space, and A in $\Sigma^1_1(X^\omega)$. Then exactly one of the following holds:

(a) $[X, A] \not\subseteq_B [\omega, -\Delta^\omega(\omega)]$,

(b) $[G, A_\omega \cap G^\omega] \subseteq_c [X, A]$.

So we have a general characterization, in any dimension d, of analytic relations $A \subseteq X^d$ for which $[X, A] \not\subseteq_B [\omega, -\Delta^d(\omega)]$. In particular, we have a characterization of analytic digraphs of uncountable Borel chromatic number.

Theorem 1.5 says that we cannot extend Theorem 1.4 to the case where $d = \omega$ for the notion of continuous homomorphism in (b). However, the extension of Theorem 1.4 to the case where $d = \omega$ is possible for the notion of a Baire-measurable homomorphism:

Theorem 1.7. Let X be a Polish space, and A in $\Sigma^1_1(X^\omega)$. Then exactly one of the following holds:

(a) $[X, A] \subseteq_B [\omega, -\Delta^\omega(\omega)]$,

(b) $[\omega^\omega, A_\omega] \subseteq_{Bm} [X, A]$.

2. The proof in finite dimensions

Let us start with two general lemmas:

Lemma 2.1. Let G be a dense G_δ subset of d^ω. Then $[G, k_G \cap G^\omega] \not\subseteq_{Bm} [\omega, -\Delta^d(\omega)]$.

Proof. We argue by contradiction. This gives a Baire-measurable function $u: G \to \omega$ such that $k_G \cap G^\omega \subseteq (u^d)^{-1}[\omega, -\Delta^d(\omega)]$. As $G = \bigcup_{i \in \omega} u^{-1}(\{i\})$, there is an integer i_0 such that $u^{-1}(\{i_0\})$ is not meager and has the Baire property in G. This implies the existence of $s \in d^{<\omega}$ such that $(G \cap N_{i_0}) \setminus u^{-1}(\{i_0\})$ is meager.

Let H be a dense G_δ subset of G such that $H \cap N_{i_0} \subseteq u^{-1}(\{i_0\})$. We choose $n \in \omega$ with $s \subseteq s_n^d$. Note that $f_{i_0}^n : N_{s_n^d \cap s_n^d} \to N_{s_n^d \cap s_n^d}$ defined by $f_{i_0}^n(s_n^d 0 \gamma) := s_n^d i_0 \gamma$ is a homeomorphism. This implies that $\bigcap_{i \in \omega} (f_{i_0}^n)^{-1}(H)$ is a dense G_δ subset of $N_{s_n^d}$. We choose $s_n^d i_0 \gamma \in \bigcap_{i \in \omega} (f_{i_0}^n)^{-1}(H)$. We get $(s_n^d i_0)_{i \in d} \in k_G \cap (H \cap N_{i_0}) \subseteq [u^{-1}(\{i_0\})]^d$, which contradicts the fact that $k_G \cap G^\omega \subseteq (u^d)^{-1}[\omega, -\Delta^d(\omega)]$.

Definition 2.2. Let $A \subseteq X^d$. We say that $C \subseteq X$ is A-discrete if $A \cap C^d = \emptyset$.

Notation. The reader should see [M] for the basic notions of effective descriptive set theory. Assume that X and X^ω are recursively presented Polish spaces and that $A \in \Sigma^1_1(X^d)$. We put

$$U := \bigcup \{ D \in \Delta^1_1(X) \mid D \text{ is } A\text{-discrete} \}.$$

Note that $U \in \Pi^1_1(X)$ if the projections are recursive.
Lemma 2.3. Assume that X and X^d are recursively presented Polish spaces, A is in $\Sigma^1_1(X^d)$, and $U = X$. Then $[X, A] \leq_B [\omega, -\Delta^d(\omega)]$.

Proof. As $U = X$, there is a partition $(D_n)_{n \in \omega}$ of X into A-discrete Δ^1_1 sets. We define a Borel map $u : X \to \omega$ by $u(x) = n \iff x \in D_n$. If $(x_i)_{i \in d} \in A$, then we cannot have $[u(x_i)]_{i \in d} \in \Delta^d(\omega)$, since the D_n’s are A-discrete.

We will recall the proof of Theorem 1.4 to show the problem appearing in the case of the infinite dimension. It is essentially identical to the one in [K-S-T], except that we do not use Choquet games.

Notation. Let Z be a recursively presented Polish space. The Gandy-Harrington topology on Z is generated by $\Sigma^1_1(Z)$ and denoted Σ_Z. It is finer than the initial topology of Z, so that $[\Sigma_Z]$ is T_1. As $\Sigma^1_1(Z)$ is countable (see 3F.6 in [M]), $[\Sigma_Z]$ is second countable. We set

$$\Omega_Z := \{ z \in Z \mid \omega_z^1 = \omega^1_{\text{CK}} \}.$$

Recall that Ω_Z is $\Sigma^1_1(Z)$ and dense in $[\Sigma_Z]$ (see III.1.5 in [S]; the second assertion is Gandy’s basis theorem). Recall also that $W \cap \Omega_Z$ is a clopen subset of $[\Omega_Z, \Sigma_Z]$ for each $W \in \Sigma^1_1(Z)$. Indeed, it is obviously open. Let $f : Z \to \omega^\omega$ be Δ^1_1 such that $Z \setminus (W \cap \Omega_Z) = f^{-1}(WO)$ (see 4A.3 in [M]). We get

$$z \in \Omega_Z \setminus (W \cap \Omega_Z) \iff z \in \Omega_Z \text{ and } \exists \xi < \omega^1_{\text{CK}} (f(z) \in WO \text{ and } |f(z)| \leq \xi).$$

This proves that $W \cap \Omega_Z$ is closed (see 4A.2 in [M]). In particular, $[\Omega_Z, \Sigma_Z]$ is zero-dimensional and regular. By Theorem 4.2 in [H-K-T] and 8.16.(iii) in [K], $[\Omega_Z, \Sigma_Z]$ is strong Choquet. By 8.18 in [K], $[\Omega_Z, \Sigma_Z]$ is a Polish space. So we fix a complete compatible metric d_Z on $[\Omega_Z, \Sigma_Z]$.

Proof of Theorem 1.4. Note first that we cannot have (a) and (b) simultaneously, by Lemma 2.1.

- We may assume that X is a recursively presented Polish space and that A is in $\Sigma^1_1(X^d)$. We set $\Phi := \{ C \subset X \mid C \text{ is } A\text{-discrete} \}$. As Φ is Π^1_1 on Σ^1_1, the first reflection theorem ensures that if $C \in \Sigma^1_1(X)$ is A-discrete, then there is $D \in \Delta^1_1(X)$ which is A-discrete and contains C (see 35.5 in [K]).

- By Lemma 2.3 we may assume that $U \neq X$, so that $Y := X \setminus U$ is a nonempty Σ^1_1 subset of X. The previous point gives the following key property:

$$\forall C \in \Sigma^1_1(X) \quad (\emptyset \neq C \subset Y \Rightarrow A \cap C^d \neq \emptyset).$$

- We construct $(x_s)_{s \in d < \omega} \subseteq Y$, $(U_n)_{n < \omega} \subseteq \Sigma^1_1(X)$ and $(U, n, t)_{n, t < \omega} \subseteq \Sigma^1_1(X^d)$ satisfying the following conditions:

1. $x_s \in V_s \subseteq Y \cap \Omega_X$ and $(x_s)_{s \in d} \subseteq U_{n, t} \subseteq A \cap Y^d \cap \Omega_X$,
2. $V_{s, m} \subseteq V_s$ and $U_{n, t, m} \subseteq U_{n, t}$,
3. $\text{diam}_{d_X}(V_s) \leq 2^{-|s|}$ and $\text{diam}_{d_X}(U_{n, t}) \leq 2^{-n-1-|t|}$.

- Assume that this is done. Fix $\alpha \in d^\omega$. Then $(V_{\alpha, p})_{p < \omega}$ is a decreasing sequence of nonempty clopen subsets of $[\Omega_X, \Sigma_X]$ whose d_X-diameters tend to zero, so there is $u(\alpha)$ in their intersection. This defines $u : d^\omega \to X$. Note that

$$d_X[x_{\alpha, p}, u(\alpha)] \leq \text{diam}_{d_X}(V_{\alpha, p}) \leq 2^{-p},$$

so that u is continuous and $(x_{\alpha, p})_{p < \omega}$ tends to $u(\alpha)$ in $[X, \Sigma_X]$.
Theorem 3. \[
\text{with } \text{and } \text{diam}_X X \text{. So it is enough to see that the construction is possible. As } Y \text{ is a nonempty } \Sigma^1_\alpha \text{ subset of } X, \text{ we can choose } \chi \in Y \cap \Omega_X \text{, and } V \in \Sigma^1_\alpha (X) \text{ such that } \chi \in V \subseteq Y \cap \Omega_X \text{ and diam}_{d_\chi}(V) \leq 1. \text{ Assume that } (\chi_i)_{i \leq l}, (V_i)_{i \leq l} \text{ and } (U_{n,t})_{n+l+1, |t| \leq l \text{ satisfying (1)-3) have been constructed, which is the case for } l = 0. \text{ Let } C \text{ be the following set: }
\}
\begin{align*}
\{ x \in X & \mid \exists (y_s)_{s \in d^d} \in X^{d^d}, y_{s^d} = x \text{ and } s \in d^d, y_s \in V_s \text{ and } \\
\forall n < l & \forall t \in d^{l-n-1}, (y_{s^d, t})_{s \in d^d} \in U_{n,t} \}.
\end{align*}
Then } C \in \Sigma^1_\alpha (X) {\text{ since } d \text{ is an integer, and } x_{s^d} \in C \subseteq Y \text{ by the induction assumption. So there is } (x_{s^d})_{s \in d^d, \in A \cap C^d} \cap \Omega_X \text{, by the key property. As } x_{s^d} \in C, \text{ we get } (x_{s^d})_{s \in d^d, \in A}. \text{ It remains to choose}
\}
- V_{s^d} \in \Sigma^1_\alpha (X) \text{ with } x_{s^d} \in V_{s^d} \subseteq V_s \text{ and diam}_{d_\chi}(V_{s^d}) \leq 2^{-l-1}, \text{ for } s \in d^d \text{ and } m \in d.
- U_{t,1} \in \Sigma^1_\alpha (X^d) \text{ with } x_{s^d} \in U_{t,1} \subseteq A \cap Y^d \cap \Omega_X \text{ and diam}_{d_\chi}(U_{t,1}) \leq 2^{-l-1}.
- U_{n,t} \in \Sigma^1_\alpha (X^d) \text{ with } x_{s^d} \in U_{n,t} \subseteq U_{n,t} \text{ and diam}_{d_\chi}(U_{n,t}) \leq 2^{-l-1}, \text{ for } (n, t) \text{ in } \omega \text{ with diam}_{d_\chi} \text{ with } n+l+1+|t| = l \text{ and } m \in d. \]
\[\square \]
3. \text{ THE NATURAL EXTENSION TO INFINITE DIMENSIONS DOES NOT WORK \}

Theorem 1.5 is a consequence of Lemma 2.1 and the following result:

Theorem 3. \[\omega^\omega, \mathbb{A}_\omega \} \not\subseteq \{ \mathbb{G}, \mathbb{A}_\omega \cap \mathbb{G}^\omega \}. \]

Proof. We argue by contradiction. This gives a continuous map } \mu : \omega^\omega \to \mathbb{G} \text{ with } \mathbb{A}_\omega \subseteq (u^\omega)^{-1}(\mathbb{A}_\omega). \text{ Let us prove that there is } \alpha \in \omega^\omega \text{ and } (s_n)_{n \in \omega} \in (\omega^\omega)^{\omega^\omega} \text{ such that } \mu(\beta(0)^{\alpha(0)}\beta(1)^{0^\alpha(1)}) = s_0 \beta(0) s_1 \beta(1) \ldots \text{ for each } \beta \in \omega^\omega. \text{ We construct } \alpha(n) \text{ and } s_n \text{ by induction on } n. \text{ Assume that } \alpha(n) \text{ and } (s_p)_{p < n} \text{ are constructed satisfying }
\]
\[s^\omega_{\sum_{j \leq 0}[1+\alpha(j)]} } \leq 0^\infty \text{ and } |t(0)^{\alpha(0)} \ldots t(p)^{\alpha(p)} \leq \gamma \Rightarrow s_0 t(0) \ldots s_p t(p) \subseteq u(\gamma) \]
\text{ for each } p < n \text{ and } t \in \omega^{0+1}. \text{ We will construct } \alpha(n) \text{ and } s_n \text{ satisfying }
\]
\[s^\omega_{\sum_{j \leq n}[1+\alpha(j)]}) \leq 0^\infty \text{ and } |t(0)^{\alpha(0)} \ldots t(n)^{\alpha(n)} \leq \gamma \Rightarrow s_0 t(0) \ldots s_n t(n) \subseteq u(\gamma) \]
\text{ for each } t \in \omega^{n+1}, \text{ which will be enough. Note first that there are } m \in \omega \text{ and } \delta \in \omega^\omega \text{ with } [\mu(s^\omega_{\sum_{j \leq n}[1+\alpha(j)]}^{\omega^\infty})]_{i \in \omega} = (\omega^\infty)^{\delta i} \text{. As } u \text{ is continuous, there is } p \in \omega \text{ such that }
\]
\[s^\omega_{\sum_{j \leq p}[1+\alpha(j)]}^{0^{p+1}} \leq \gamma \Rightarrow s^\omega_{\sum_{j \leq p}[1+\alpha(j)]}^{0^{p+1}} \leq \gamma \Rightarrow s^\omega_{\sum_{j \leq p}[1+\alpha(j)]}^{0^{p+1}} \leq \gamma, \]
\[s^\omega_{\sum_{j \leq p}[1+\alpha(j)]}^{1^{p+1}} \leq \gamma \Rightarrow s^\omega_{\sum_{j \leq p}[1+\alpha(j)]}^{1^{p+1}} \leq \gamma \Rightarrow s^\omega_{\sum_{j \leq p}[1+\alpha(j)]}^{1^{p+1}} \leq \gamma. \]
Note that } s^\omega_{\sum_{j \leq p}[1+\alpha(j)]} \text{ for each } i \in \omega. \text{ Indeed, let } \varepsilon \in \omega^\omega. \text{ Then } u(s^\omega_{\sum_{j \leq n}[1+\alpha(j)]}^{0^{p+1}} \varepsilon)_{i \in \omega} \subseteq \omega \cap [N_{s^\omega_0} 0 \times N^\omega_{s^\omega_1} \times (\omega^\omega)^\omega] \subseteq \prod_{i \in \omega} N_{s^\omega_i} i. \text{ In particular, this implies that } s_0 \ldots s_{n-1} 0 \subseteq s^\omega_0 \ldots s^\omega_{n-1} \subseteq u(s^\omega_{\sum_{j \leq n}[1+\alpha(j)]}^{0^{p+1}} \varepsilon).
Proof. Suppose towards a contradiction that such an \((\omega,\Delta^\omega(\omega))\) exists. Let \(X_0 = 0\), since otherwise we would have \([X_0,\mathcal{A}_0] \leq B[\omega, \Delta^\omega(\omega)]\). By Lemma 2.1, we now get some continuous \(u: X_0 \to \omega^\omega\) such that \(\mathcal{A}_0 \subseteq (u^\omega)^{-1}(\mathcal{A}_0)\). Then \(u[X_0]\) will be a compact subset of \(\omega^\omega\) and hence contained in some product \(k_0 \times k_1 \times \ldots \subseteq \omega^\omega\), where the \(k_i\)'s are finite. Notice however that \((k_0 \times k_1 \times \ldots)^\omega \cap \mathcal{A}_0 = \emptyset\), and thus \(\mathcal{A}_0 \subseteq (u^\omega)^{-1}[(k_0 \times k_1 \times \ldots)^\omega \cap \mathcal{A}_0] = \emptyset\), which is a contradiction.

Assume temporarily that there is no Polish space \(X_0\) and \(\mathcal{A}_0\) such that \(A_o \neq \emptyset\), and \(\mathcal{A}_0 \neq \emptyset\). By Theorem 4.1, \(X_0\) cannot be compact.
Note that we may assume that X_0 is zero-dimensional, since there is a finer zero-dimensional Polish topology on X_0 (see 13.5 in [K]). This means that we can view X_0 as a closed subspace of ω (see 7.8 in [K]). As X_0 is not compact, the tree associated with this closed set (see 2.4 in [K]) is not finite splitting (see 4.11 in [K]). The proof of Theorem 1.6 will have the same scheme as the proof of Theorem 1.4. We have to build infinitely many V_s's at some levels of the construction, since the tree associated with X_0 is not finite splitting. The only place where the proof of Theorem 1.4 does not work in infinite dimension is when we write "$C \in \Sigma^1_1(X)$".

The main modifications to make are the following:

- As we have to build infinitely many V_s's at some levels of the construction, it is not clear at all that C remains Σ^1_1, since Σ^1_1 is not closed under infinite intersections. However, Σ^1_1 is closed under $\forall \omega$, and this will be enough. We will have to build the V_s's uniformly in s at each level of the construction to ensure that C is Σ^1_1, and it is possible. We will also ensure that there are only finitely many $U_{n,t}$'s at each level of the construction, to ensure that C is Σ^1_1.

- The reason why Theorem 3 is true is that we cannot control all the diameters in G at each level of a construction that would give a map $u : \omega \to G$. We will only control finitely many diameters, since we want C to be Σ^1_1. This is the reason why we will work in G instead of ω. This gives the possibility of controlling only one diameter at each level of the construction among the V_s's (and finitely many among the $U_{n,t}$'s). So the point in the proof of Theorem 1.6 is that we cannot build the Σ^1_1 sets uniformly at each level of the construction and control all the diameters at the same time.

Proof of Theorem 1.6. Note first that we cannot have (a) and (b) simultaneously, by Lemma 2.1.

- Note that there is a recursive map $\tilde{s} : \omega \to \omega$ such that $\tilde{s}(l)$ codes s_l^*, i.e., $\tilde{s}(l) = I(s_l^*)$ (see the notation in the introduction). Indeed, there is a recursive map $\tilde{\psi} : \omega \to \omega$ whose restriction to Seq is an increasing bijection from Seq onto ω. Now $(\tilde{\psi}|_{\text{Seq}})^{-1}$ defines a recursive map $\tilde{\psi}_* : \omega \to \omega$. It remains to note that

$$\tilde{s}(l) = t \iff t \in \text{Seq and } \text{lh}(t) = l \text{ and } \forall i < l \, [i < \text{lh}[\tilde{\psi}_*(l)] \text{ and } (t)_i = (\tilde{\psi}_*(l))_i] \text{ or } [i \geq \text{lh}[\tilde{\psi}_*(l)] \text{ and } (t)_i = 0].$$

- We may assume that

 - The X^ω's are recursively presented Polish spaces, for $l \in \omega$.
 - The projections are recursive.
 - The maps $\Pi_l : \omega \times X^\omega \to X$ defined by

$$\Pi_l[t, (x_s)_{s \in \omega}] = x \iff t \in \text{Seq and } \text{lh}(t) = l \text{ and } x = x_T$$

are partial recursive functions on $\{t \in \omega \mid t \in \text{Seq and } \text{lh}(t) = l\} \times X^\omega$, for $l \in \omega$.

 - The maps $\Pi'_l : \omega^2 \times X^\omega \to X^\omega$ defined by

$$\Pi'_l[(n, t), (x_s)_{s \in \omega}] = (y_i)_{i \in \omega} \iff t \in \text{Seq and } n + 1 + \text{lh}(t) = l \text{ and } \forall i \in \omega \, y_i = x_{n+\text{lh}(t)}$$

are partial recursive functions on $\{(n, t) \in \omega^2 \mid t \in \text{Seq and } n + 1 + \text{lh}(t) = l\} \times X^\omega$, for $l \in \omega$.

 - $A \in \Sigma^1_1(X^\omega)$.

We set \(\Phi := \{ C \subseteq X \mid C \text{ is } A\text{-discrete} \} \). As \(\Phi \) is \(H^1 \) on \(\Sigma^1_1 \), the first reflection theorem ensures that if \(C \in \Sigma^1_1 (X) \) is \(A\)-discrete, then there is \(D \in \Delta^1_1 (X) \) which is \(A\)-discrete and contains \(C \).

- By Lemma 2.3 we may assume that \(U \neq X \), so that \(Y := X \setminus U \) is a nonempty \(\Sigma^1_1 \) subset of \(X \). The previous point gives the following key property:

\[
\forall C \in \Sigma^1_1 (X) \quad (\emptyset \neq C \subseteq Y \Rightarrow A \cap C^c \neq \emptyset).
\]

- We construct
- \((x_s)_{s \in \omega} < \subseteq Y \),
- \((V_s)_{s \in \omega} < \subseteq \Sigma^1_1 (X) \),
- \((U_{n,t})_{(n,t) \in \omega \times \omega} < \subseteq \Sigma^1_1 (X^\omega) \).

We want these objects to satisfy the following conditions:

1. \(x_s \in V_s \subseteq Y \cap \Omega_X \) and \((x_s, u_i)_{i \in \omega} \in U_{n,t} \subseteq A \cap Y^\omega \cap \Omega_{X^\omega} \),
2. \(V_{n,m} \subseteq V_s \) and \(U_{n,m} \subseteq U_{n,t} \),
3. \(\text{diam}_{d_X} (V_s^\omega) \leq 2^{-l} \) and \(|s_n^00 = s_l^00 \Rightarrow \text{diam}_{d_X} (U_{n,t}) \leq 2^{-l}| \),
4. for any fixed \(|s| \), the relation \(\alpha \in V_s \) is a \(\Sigma^1_1 \) condition on \((x_s, u) \),
5. for any fixed \(n \) and fixed \(|t| \), the relation \(\alpha \in U_{n,t} \) is a \(\Sigma^1_1 \) condition on \(\{ (x_s)_{s \in \omega}, t \} \).

- Assume that this is done. Fix \(\alpha \in \mathcal{G} \). Then \((V_{\alpha,p})_{p \in \omega} \) is a decreasing sequence of nonempty clopen subsets of \([\Omega_X, \Sigma_X] \) whose \(d_X \)-diameters tend to zero, so there is \(u(\alpha) \) in their intersection. This defines \(u : \mathcal{G} \to X \). Note that

\[
d_X [x_{\alpha,p}, u(\alpha)] \leq \text{diam}_{d_X} (V_{\alpha,p}),
\]

so that \(u \) is continuous and \((x_{\alpha,p})_{p \in \omega} \) tends to \(u(\alpha) \) in \([X, \Sigma_X] \).

If \((s_n^\omega)_{\gamma} \) is a decreasing sequence of nonempty clopen subsets of \([\Omega_X, \Sigma_X] \) whose \(d_X \)-diameters tend to zero, then there is \((\alpha_i)_{i \in \omega} \) in their intersection. Note that \((\alpha_i)_{i \in \omega} \in A \). Moreover, \((x_{\alpha_i, \gamma})_{\gamma \in \omega} \) tends to \((\alpha_i)_{i \in \omega} \) in \([X^\omega, \Sigma_X^\omega] \), and in \([X^\omega, \Sigma_X^\omega] \) too. As \((x_{\alpha_i, \gamma})_{\gamma \in \omega} \) tends to \(u(s_n^\omega) \) in \([X, \Sigma_X] \), we get \(u(s_n^\omega) = \alpha_i \), for each \(i \in \omega \). Thus \([u(s_n^\omega)]_{i \in \omega} \in A \).

- So it is enough to see that the construction is possible. If \(V_0 \) is any \(\Sigma^1_1 \) set, then clearly (4) holds for \(s \) of length 0. Now suppose that \(V_s \) has been defined for all \(s \in \omega^{<l} \) and that (4) holds. Then in order to define \(V_{sp} \) for \(r \in \omega^{l+1} \), while ensuring (4), we will let \(V_{sp0} \subseteq V_{sp} \) be some chosen \(\Sigma^1_1 \) set of diameter at most \(2^{-l} \) (to be determined later on) and \(V_{sm} := V_s \) for all \(sm \neq s_l^00 \). Then for \(r \in \omega^{l+1} \),

\[
x \in V_{sp0} \iff (r = s_l^00 \text{ and } x \in V_{sp0}) \text{ or } (r = sm \neq s_l^00 \text{ and } x \in V_s),
\]

which is \(\Sigma^1_1 \) in \((x, r) \) by the induction hypothesis.

Similarly, if \(U_{n,sp} \) is any \(\Sigma^1_1 \) set, then clearly (5) holds for \(t \) of length 0. Now suppose that \(U_{n,t} \) has been defined for all \(t \in \omega^{\leq k} \) and that (5) holds. Then in order to define \(U_{n,pr} \) for \(r \in \omega^{k+1} \), while ensuring (5), we again split into two cases. If \(s_n^00 = s_l^000 = s_l^00 \), then \(U_{n,t} \subseteq U_{n,pr} \) will be some chosen \(\Sigma^1_1 \) set of diameter at most \(2^{-r} \) (to be determined later on). On the other hand, if \(s_n^00 = s_l^0tm \neq s_l^00 \), then we set \(U_{n,pr} := U_{n,t} \). Then for \(r \in \omega^{k+1} \),

\[
(x_i)_{i \in \omega} \in U_{n,pr} \iff \begin{cases} (s_n^000 = s_l^00) = s_l^00 \text{ and } (x_i)_{i \in \omega} \in U_{n,pr} \\ \text{or } (s_n^000 = s_l^0tm \neq s_l^00) \text{ and } (x_i)_{i \in \omega} \in U_{n,t}, \end{cases}
\]
which is Σ^1_2 in $[\omega^0, r]$ by the induction hypothesis, since $s^\omega_0 r = s^\omega_1 r$ can hold for only finitely many $(n, r) \in \omega \times \omega^\omega$.

Notice that in this way (2) and (3) are also satisfied, so it remains to define $V_{s^\omega 0}$, $U_{n, 0}$ and $U_{n, r}$ for $s^\omega_0 r = s^\omega_1 r$ of diameter small enough such that (1) also holds.

- As Y is a nonempty Σ^1_1 subset of X, we can choose $x_0 \in Y \cap \Omega_X$, and set $V_0 := Y \cap \Omega_X$.

- The key property applied to V_0 gives $(x_1)_{i \in \omega} \in A \cap \Omega_X$. We choose $U_{0, 0}$ in $\Sigma^1_1(X)$ such that $(x_1)_{i \in \omega} \subseteq U_{0, 0} \cap \Omega_X$ and $\text{diam}_{\text{acz}}(U_{0, 0}) \leq 1$. Then we choose $V_0 \in \Sigma^1_1(X)$ such that $x_0 \in V_0 \subseteq V_0$ and $\text{diam}_{\text{acz}}(V_0) \leq 1$. Assume that $(x_n)_{| s | \leq l}$, $(V_s)_{| s | \leq l}$, and $(U_{n, x})_{n+1 \geq | s | \leq t}$ satisfying (1)-(5) have been constructed, which is the case for $l \leq 1$.

- We put

$$
C := \left\{ x \in X \mid \exists (y_s)_{s \in \omega^l} \in X^{\omega^l} \quad y_{s^\omega} = x \quad \text{and} \quad \forall s \in \omega^l, y_s \in V_s \quad \forall n < l \quad \forall t \in \omega^{l-n-1} \quad (y_{s^\omega t})_{i \in \omega} \in U_{n, t} \right\}.
$$

Then $x_{s^\omega} \in C$, by the induction assumption. Moreover, $C \in \Sigma^1_1$, by conditions (4) and (5) since Σ^1_1 is closed under \forall^ω. The key property applied to C gives $(x_{s^\omega})_{i \in \omega} \in A \cap \Omega_X$. As $x_{s^\omega} \in C$, there is $(x_s)_{s \in \omega^l \setminus \{ s^\omega \}} \subseteq X$ such that $x_s \in V_s$ for each $s \in \omega^l$ and $(x_{s^\omega t})_{i \in \omega} \in U_{n, t}$ for each $n < l$ and each $t \in \omega^{l-n-1}$. This defines $(x_s)_{s \in \omega^{l+1}}$.

We choose $U_{l, 0} \in \Sigma^1_1(X)$ such that $(x_{s^\omega})_{i \in \omega} \in U_{l, 0} \subseteq A \cap \Omega_X$ and $\text{diam}_{\text{acz}}(U_{l, 0}) \leq 2^{-l}$, and $V_{s^\omega 0} \in \Sigma^1_1(X)$ with $x_{s^\omega 0} \in V_{s^\omega 0} \subseteq V_{s^\omega}$, $\text{diam}_{\text{acz}}(V_{s^\omega 0}) \leq 2^{-l}$. If $s^\omega_0 r = s^\omega_1 r = s^\omega_1 0$, then we choose $U_{n, r} \in \Sigma^1_1(X)$ such that $\text{diam}_{\text{acz}}(U_{n, r}) \leq 2^{-l}$ and $(x_{s^\omega r})_{i \in \omega} \in U_{n, r} \subseteq U_{n, t}$. □

5. The Baire-measurable natural extension to infinite dimension works

Theorem 1.7 is a consequence of Theorem 1.6, Lemma 2.1 and of the following result:

Theorem 5.1. $[\omega^\omega, A_\omega] \leq_{BM} [G, A_\omega \cap \mathcal{G}^\omega]$.

Notation. We define the following equivalence relation on the Baire space ω^ω, which is the analogous version of the usual equivalence relation E_0 on the Cantor space 2^ω (see [H-K-L]):

$$
\alpha \ E_0^\omega \beta \iff \exists m \in \omega \quad \forall n \geq m \quad \alpha(n) = \beta(n).
$$

Lemma 5.2. There is a dense and E_0^ω-invariant G_δ subset G of ω^ω such that

$$
\forall \alpha \in G \quad \forall l, m \in \omega \quad \exists n \geq m \quad s^\omega_n l \subseteq \alpha
$$

(in particular, $G \subseteq \mathcal{G}$).

Proof. We set $G_0 := \{ \alpha \in \omega^\omega \mid \forall l, m \in \omega \quad \exists n \geq m \quad s^\omega_n l \subseteq \alpha \}$. Note that G_0 is a dense G_δ subset of ω^ω. We also define, for $n, p \in \omega$, $f_p^n : \omega^\omega \to \{ \alpha \in \omega^\omega \mid \alpha(n) = p \}$ by

$$
f_p^n(\alpha)(m) := \begin{cases}
\alpha(m) & \text{if } m \neq n, \\
p & \text{if } m = n.
\end{cases}
$$

Note that f_p^n is onto, continuous, open, and has a clopen range.
Then we set

\[D := \{ H \subseteq \omega^\omega \mid H \text{ is a dense } G_\delta \} \]

and we define \(\Phi : D \to D \) by \(\Phi(H) := H \cap \bigcap_{n,p \in \omega} \left(f_p^n \right)^{-1}(H) \). This allows us to define, for \(q \in \omega \), \(G_{q+1} := \Phi(G_q) \), and we set \(G := \bigcap_{q \in \omega} G_q \). Note that \(G \in D \). Moreover, if \(\alpha \in G \) and \(n, p \in \omega \), then \(f_p^n(\alpha) \in G \). Indeed, let \(q \in \omega \). Then \(\alpha \in G_{q+1} \subseteq \left(f_p^n \right)^{-1}(G_q) \). Now if \(\beta \in \omega \), then there is \(s \in \omega^\omega \) such that \(\beta = s(\alpha - \omega|s) \) (which means that \(s \subseteq \beta \) and \(\alpha, \beta \) agree from the coordinate \(|s| \) on). We set, for \(i \leq |s| \), \(\beta_i := (s|i)(\alpha - \omega|s) \), so that \(\beta_0 = \alpha \) and \(\beta_{|s|} = \beta \). Note that \(\beta_i+1 = f_i(s'(i)) \) for each \(i \leq |s| \), by induction on \(i \). This proves that \(\beta \in G \) for each \(i \leq |s| \), by induction on \(i \). In particular, \(\beta \in G \) which is \(\mathbb{E}_0^{-}\text{-invariant} \). This finishes the proof since \(G \subseteq G_0 \).

\[\Box \]

\textbf{Notation.} For each \(l \in \omega \), we define an oriented graph \(G_{l+1}^i \) on \(\omega^{l+1} \) as follows:

\[s G_{l+1}^i s' \iff \exists n \in \omega \ \exists i \not= 0 \ \exists t \in \omega^{<\omega} \ (s, s') = (s_0^n 0 t, s_0^n it). \]

We denote by \(G_{l+1}^i \) the symmetrization of \(G_{l+1}^i \).

\textbf{Lemma 5.3.} The graph \((\omega^{l+1}, G_{l+1}^i) \) is connected and acyclic.

\textbf{Proof.} We argue by induction on \(l \). For \(l = 0 \), we have

\[i G_1^i i' \iff (i = 0 \text{ and } i' \not= 0) \text{ or } (i' = 0 \text{ and } i \not= 0). \]

If \(i < i' \), then \((i, 0, i') \) is a \(G_1 \)-walk from \(i \) to \(i' \) if \(i \not= 0 \), and \((i, i') \) is a \(G_1 \)-walk from \(i \) to \(i' \) if \(i = 0 \). Thus \(\omega, G_1 \) is connected. Now if \((i_j)_{j \leq L} \) is a \(G_1 \)-cycle, then either \(i_0 \not= 0 \) and \(i_1 = i_{L-1} = 0 \), or \(i_0 = 0 \) and \(i_2 = 0 \). In both cases, this contradicts the fact that \((i_j)_{j \leq L} \) is a cycle. Thus \(\omega, G_1 \) is acyclic.

Assume that \((i_j)_{j \leq L} \) is a cycle. Note that

\[si G_{l+1}^i s'i' \iff (s = s' = s''_l \text{ and } i G_1^i i') \text{ or } (s G_{l+1}^i s' \text{ and } i = i'). \]

We set, for \(i \in \omega \), \(E_i := \{ ti \mid t \in \omega^{i+1} \} \). Note that \(\omega^{l+2} \) is the disjoint union of the \(E_i \)'s, that the map \(ti \mapsto t \) is an isomorphism from \((E_i, G_{l+2}) \) onto \((\omega^{l+1}, G_{l+1}^i) \), and that the map \(s_{l+1}^i \mapsto i \) is an isomorphism from \((s_{l+1}^i \mid i \in \omega, G_{l+2}) \) onto \((\omega, G_1) \).

In particular, \((E_i, G_{l+2}) \) is connected and acyclic, and \((\omega^{l+2}, G_{l+2}^i) \) is connected.

Now if \((t_j)_{j \leq L} \) is a \(G_{l+2} \)-cycle, then the sequence \([t_j(l+1)]_{j \leq L} \) is not constant. There are \(j_0 \leq L \) minimal with \(t_{j_0}(l+1) \not= t_0(l+1) \), and \(j_1 \geq j_0 \) minimal with \(t_{j_1}(l+1) = t_0(l+1) \). Note that \(t_{j_0-1} = t_{j_1} = s_{l+1}^0 t_0(l+1) \). Thus \(j_0 = 1 \) and \(j_1 = L \). If \(t_0(l+1) \not= 0 \), then \(t_1 = t_{L-1} = s_{l+1}^0 t_0(1) \). If \(t_0(l+1) = 0 \), then the sequence \([t_j(l+1)]_{0 < j < L} \) is constant and \(t_1 = t_{L-1} = s_{l+1}^0 t_1(l+1) \). In both cases, this contradicts the fact that \((t_j)_{j \leq L} \) is a cycle. Thus \((\omega^{l+2}, G_{l+2}^i) \) is acyclic.

\[\Box \]

\textbf{Notation.} Lemma 5.3 and Theorem I.2.5 in [13] imply the existence, for each pair \(\{s, s'\} \) of distinct vertices in \(\omega^{l+1} \), of a unique \(s-s' \) path in \((\omega^{l+1}, G_{l+1}^i) \). We will call it \(p_{s,s'}^{l+1} \). If \(s = s' \), then we set \(p_{s,s'}^{l+1} := \langle s \rangle \).

The proof of Lemma 5.3 shows that

\[p_{s,s'}^{l+2} = \begin{cases} (p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l)p_{s,s'}^{l+1}(0)i) \text{ if } i = i', \\
(p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l-1)p_{s,s'}^{l+1}(0)i)', \text{ otherwise.} \\
(p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l)p_{s,s'}^{l+1}(0)i) \end{cases} \]

\[p_{s,s'}^{l+1} = \begin{cases} (p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l)p_{s,s'}^{l+1}(0)i) \text{ if } i = i', \\
(p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l-1)p_{s,s'}^{l+1}(0)i)', \text{ otherwise.} \\
(p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l)p_{s,s'}^{l+1}(0)i) \end{cases} \]

\[p_{s,s'}^{l+1} = \begin{cases} (p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l)p_{s,s'}^{l+1}(0)i) \text{ if } i = i', \\
(p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l-1)p_{s,s'}^{l+1}(0)i)', \text{ otherwise.} \\
(p_{s,s'}^{l+1}(0)i, ..., p_{s,s'}^{l+1}(l)p_{s,s'}^{l+1}(0)i) \end{cases} \]
Lemma 5.4. Let $\beta \in \omega^\omega$. Then $\lceil [\beta]_{\omega^\omega}, \omega \cap ([\beta]_{\omega^\omega})^\omega \rceil \leq [G, \omega \cap G^\omega]$.

Proof. We have seen that if $\alpha \in \omega^\omega$, then there is $s \in \omega^\omega$ such that $\alpha = s(\beta-\beta)$. We will construct $u(\alpha) \in G$ by induction on $|s|$.

- If $|s| = 0$, then we simply choose $u(\beta) \in G$.
- If $|s| = 1$, then we choose $n_0 \in \omega$ such that $s^+_{n_0} \beta(0) \subseteq u(\beta)$, and we set

 $$u(i(\beta-\beta[1]) := s^+_{n_0} i[u(\beta) - u(\beta)](n_0 + 1)$$

 if $i \neq \beta(0)$. Note that $u(i(\beta-\beta[1]) \in G(\omega^\omega)^\omega$ $u(\beta) \in G$, so that $u(i(\beta-\beta[1]) \in G$. Moreover, we have $u(i(\beta-\beta[1])) \in \omega \cap G^\omega$.

- Assume that $u(\beta \in G)$ is constructed for $|s| \leq l+1$, which is the case for $l = 0$. Let $\phi : \omega^l+1 \rightarrow \omega$ be a bijection with $\phi(\omega^l[1]) \neq 0$.

- If $E_q = \omega$, then we set $E_q \in \omega$.

- If $E_q \in \omega$, then we use the paths $p^+_{s,i}$ defined after Lemma 5.3. We choose $r \in \omega \setminus E_q$ minimal for which there is $p \in E_q$ such that $p^+_{s,i} = 2$. Such an r exists since if $m \in \omega \setminus E_q$, then there is $i < p^+_{s,i} \omega$ such that $\phi(p^+_{s,i} \omega) \neq E_q$.

- If $p^+_{s,i} \omega \neq E_q$, then the set $\phi(q^{+1}_{s,0} \omega) \subseteq \text{increasing such that } \{ \phi^{-1}(p) | p \in E_q \}$, $\phi(\omega^l[1])$ is connected, and acyclic by Lemma 5.3. We proceed by induction on q. We first set $E_q := \{0\}$. Assume that E_q is constructed.

- If $E_q = \omega$, then we set $E_q \in \omega$.

- If $E_q \in \omega$, then we use the paths $p^+_{s,i}$ defined after Lemma 5.3. We choose $r \in \omega \setminus E_q$ minimal for which there is $p \in E_q$ such that $p^+_{s,i} = 2$. Such an r exists since if $m \in \omega \setminus E_q$, then there is $i < p^+_{s,i} \omega$ such that $\phi(p^+_{s,i} \omega) \neq E_q$.

- If $p^+_{s,i} \omega \neq E_q$, then the set $\phi(q^{+1}_{s,0} \omega) \subseteq \text{increasing such that } \{ \phi^{-1}(p) | p \in E_q \}$, $\phi(\omega^l[1])$ is connected, and acyclic by Lemma 5.3. We proceed by induction on q. We first set $E_q := \{0\}$. Assume that E_q is constructed.

Claim 1. $\bigcup_{q \in \omega} E_q \neq \omega$.

Indeed, let $r \in \omega \setminus \{0\}$. By induction on $k \in \omega$ we see that $\phi(p^+_{s,i} \omega) \neq E_q$. Thus $r \in \bigcup_{q \in \omega} E_q$.

This allows us to define $q(s) := \min\{q \in \omega | \phi(s) \in E_q\}$, for $s \in \omega^l+1$.

Claim 2. Let $n \leq l$, and $t \in \omega^{l-n}$. Then there is $i \in \omega$ such that $q(s^+_n it) < q(s^+_n jt)$ for each $j \neq i$. Moreover, $q(s^+_n jt) = q(s^+_n j' t)$ if $j, j' \neq i$.

Indeed, we argue by contradiction. Choose $i \neq j$ such that $q := q^+_n it = q^+_n jt$ is minimal among the $q^+_n it$'s. By definition of E_0 we have $q \neq 0$. As $\phi(s^+_n it) \in E_q \setminus E_q-1$, we have $E_q-1 \neq \omega$.

This implies the existence of $n' \leq l$ and $t' \in \omega^{l-n'}$ such that $E_q \setminus E_q-1 \subseteq \{ \phi(s^+_n j') | i \in \omega \}$. Thus $s^+_n it$ and $s^+_n j't$ differ at the coordinate n', which implies that $n = n'$ and $t = t'$. By construction of E_q there is $k \in \omega$ such that $s^+_n kt \in E_q-1$, which contradicts the minimality of q. This proves Claim 2.

- We have to construct $u(sk[\beta-\beta(l+2)]) \in G$ for $|s| = l+1$ and $k \neq \beta(l+1)$. We will construct $u(sk[\beta-\beta(l+2)])$ by induction on $q(s)$.

- If $q(s) = 0$, then $s = s^+_1$ and we choose $n_1 \in \omega$ with

 $$s^+_n \beta(1+1) \subseteq u(s^+_1 \beta(l+1))$$

 and we set

 $$u(s^+_1 k[\beta-\beta(l+2)] = s^+_1 k[u(s^+_1 \beta(l+1)) - u(s^+_1 \beta(l+1))])$$

 if $k \neq \beta(l+1)$. As before, $u(s^+_1 k[\beta-\beta(l+2)]) \in G$. Moreover,

 $$[u(s^+_1 k[\beta-\beta(l+2)])]_{\omega} \in \omega \cap G^\omega$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
- Assume that \(u(sk[\beta-\beta][l+2])) \in G \) is constructed for \(q(s) \leq q \), which is the case for \(q=0 \). If \(q(s) = q+1 \), then \(\varphi(s) \in E_{q+1} \setminus E_q \). This implies the existence of \(n \leq l \), \(t \in \omega^{l-n} \), \(i_0 \neq 0 \) and of a unique \(p \in E_q \) such that \(\{ \varphi^{-1}(p), s \} = \{ s^n t_0, s^n i_0 t \} \).

Note that \(q(\varphi^{-1}(p)) \leq q \), so that \(\beta_p := u(\varphi^{-1}(p)k[\beta-\beta](l+2)) \) is defined and in \(G \). We choose \(n_{q+1} \in \omega \) such that \(s^n_{n+1}[\varphi^{-1}(p)(n)] \leq \beta_p \), and we set
\[
u(s^n_{i_k} t[k][\beta-\beta](l+2)) := s^n_{n+1} i[i_p-\beta_p(n_{q+1}+1)]
\] if \(i \neq \varphi^{-1}(p)(n) \). This is licit by Claim 2, since only \(\beta_p \) is defined among the \(u(s^n_{i_k} t[k][\beta-\beta](l+2)) \)'s. As before, \(u(s^n_{i_k} t[k][\beta-\beta](l+2)) \in G \). Moreover,
\[
| u(s^n_{i_k} t[k][\beta-\beta](l+2)) |_{i \in \omega} \in A_\omega.
\]

- Now \(u : [\beta]_{E_0^\omega} \rightarrow G \) is constructed. Assume that \((s^n_{i_k} i_\gamma)_{\gamma} \in A_\omega \cap ([\beta]_{E_0^\omega})^\omega \). We can write \(\gamma = t \delta \), \(\tilde{t} \in \omega^\omega \), \(\delta = \beta-\beta(n+1+|\tilde{t}|) \), and \(\tilde{t}(|\tilde{t}| - 1) \neq \beta(n+|\tilde{t}|) \) if \(\tilde{t} \neq \emptyset \). We have to check that \(u(s^n_{i_k} i_\gamma) |_{i \in \omega} \in A_\omega \). We may assume that \(\tilde{t} \neq \emptyset \). We set \(k := \tilde{t}(|\tilde{t}| - 1) \) and also \(t := \tilde{t}(|\tilde{t}| - 1) \). Then \((s^n_{i_k} i_\gamma)_{\gamma} = (s^n_{i_k} t[k\delta])_{\gamma} \) and Claim 2 provides \(i \). Now the construction of \(u \) shows that \(u(s^n_{i_k} i_\gamma) |_{i \in \omega} \in A_\omega \) (consider \(\tilde{l} := n+|\tilde{t}| \)).

\(\Box \)

Proof of Theorem 5.1. Using the axiom of choice, fix a selector \(S : \omega^\omega \rightarrow \omega^\omega \) for \(E_0^\omega \), i.e., a map satisfying \(\alpha E_0^\omega \beta \Rightarrow S(\alpha) = S(\beta) E_0^\omega \alpha \) for each \(\alpha, \beta \in \omega^\omega \) (see 12.15 in [K]). We can write
\[
\omega^\omega = G \cup \bigcup_{\beta \in S[\omega^\omega] \setminus G} [\beta]_{E_0^\omega},
\]
and this union is disjoint. By Lemma 5.4 there is \(u_\beta : [\beta]_{E_0^\omega} \rightarrow G \) such that
\[
A_\omega \cap ([\beta]_{E_0^\omega})^\omega \subseteq (u_\beta)^{-1}(A_\omega \cap G^\omega),
\]
for each \(\beta \in \omega^\omega \). We define \(u : \omega^\omega \rightarrow G \) by
\[
u(\alpha) := \begin{cases}
\alpha & \text{if } \alpha \in G,
\nu(\beta) & \text{if } \alpha \in [\beta]_{E_0^\omega} \text{ and } \beta \in S[\omega^\omega] \setminus G.
\end{cases}
\]

Now let \(U \) be an open subset of \(G \). Then \(u^{-1}(U) = (G \cap U) \cup \bigcup_{\beta \in S[\omega^\omega] \setminus G} u_\beta^{-1}(U) \). The set \(G \cap U \) is a \(G \) subset of \(\omega^\omega \), and \(\bigcup_{\beta \in S[\omega^\omega] \setminus G} u_\beta^{-1}(U) \subseteq \omega^\omega \setminus G \) is meager. This proves that \(u \) is Baire-measurable.

Now let \((s^n_{i_k} i_\gamma)_{\gamma} \in A_\omega \). Note that \(s^n_{i_k} i_\gamma E_0^\omega s^n_{i_k} j_\gamma \) if \(i, j \in \omega \). If \(s^n_{i_k} 0_\gamma \in G \), then
\[
u(s^n_{i_k} i_\gamma) |_{i \in \omega} = (s^n_{i_k} i_\gamma) |_{i \in \omega} \in A_\omega \cap G^\omega \subseteq A_\omega \cap G^\omega
\]
since \(G \) is \(E_0^\omega \)-invariant. If \(s^n_{i_k} 0_\gamma \notin G \), then there is \(\beta \in S[\omega^\omega] \setminus G \) with \(s^n_{i_k} 0_\gamma \in [\beta]_{E_0^\omega} \). In this case we have \((s^n_{i_k} i_\gamma) |_{i \in \omega} \in A_\omega \cap ([\beta]_{E_0^\omega})^\omega \). Thus
\[
u(s^n_{i_k} i_\gamma) |_{i \in \omega} = (s^n_{i_k} i_\gamma) |_{i \in \omega} \in A_\omega \cap G^\omega \subseteq A_\omega \cap G^\omega
\]
and \(u_\beta(s^n_{i_k} i_\gamma) |_{i \in \omega} \in A_\omega \cap G^\omega \). This finishes the proof.

\(\Box \)

Question. Is it true that \(\omega^\omega, A_\omega \leq B [G, A_\omega \cap G^\omega] \)? This would imply that we can replace “Baire measurable” with “Borel” in Theorem 1.7.
References

Equipe d’Analyse Fonctionnelle, Université Paris 6, tour 46-0, boîte 186, 4, place Jussieu, 75 252 Paris Cedex 05, France

Current address: Université de Picardie, I.U.T. de l’Oise, site de Creil,13, allée de la faïencerie, 60 107 Creil, France

E-mail address: dominique.lecomte@upmc.fr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use