Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Log canonical models for the moduli space of curves: The first divisorial contraction


Authors: Brendan Hassett and Donghoon Hyeon
Journal: Trans. Amer. Math. Soc. 361 (2009), 4471-4489
MSC (2000): Primary 14E30, 14H10
DOI: https://doi.org/10.1090/S0002-9947-09-04819-3
Published electronically: March 10, 2009
MathSciNet review: 2500894
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we initiate our investigation of log canonical models for $ (\overline{\bf\mathcal{M}}_g,\alpha \delta)$ as we decrease $ \alpha$ from 1 to 0. We prove that for the first critical value $ \alpha = 9/11$, the log canonical model is isomorphic to the moduli space of pseudostable curves, which have nodes and cusps as singularities. We also show that $ \alpha = 7/10$ is the next critical value, i.e., the log canonical model stays the same in the interval $ (7/10, 9/11]$. In the appendix, we develop a theory of log canonical models of stacks that explains how these can be expressed in terms of the coarse moduli space.


References [Enhancements On Off] (What's this?)

  • [AV02] Dan Abramovich and Angelo Vistoli.
    Compactifying the space of stable maps.
    J. Amer. Math. Soc., 15(1):27-75 (electronic), 2002. MR 1862797 (2002i:14030)
  • [BCHM06] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan.
    Existence of minimal models for varieties of log general type, 2006.
    arXiv.org:math/0610203.
  • [BM97] Edward Bierstone and Pierre D. Milman.
    Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant.
    Invent. Math., 128(2):207-302, 1997. MR 1440306 (98e:14010)
  • [CH88] Maurizio Cornalba and Joe Harris.
    Divisor classes associated to families of stable varieties, with applications to the moduli space of curves.
    Ann. Sci. École Norm. Sup. (4), 21(3):455-475, 1988. MR 974412 (89j:14019)
  • [CF91] Fernando Cukierman and Lung-Ying Fong.
    On higher Weierstrass points.
    Duke Math. J., 62(1):179-203, 1991. MR 1104328 (92c:14027)
  • [DM69] Pierre Deligne and David Mumford.
    The irreducibility of the space of curves of given genus.
    Inst. Hautes Études Sci. Publ. Math., (36):75-109, 1969. MR 0262240 (41:6850)
  • [Fab96] Carel Faber.
    Intersection-theoretical computations on $ \overline { M}\sb g$.
    In Parameter spaces (Warsaw, 1994), volume 36 of Banach Center Publ., pages 71-81. Polish Acad. Sci., Warsaw, 1996. MR 1481481 (98j:14033)
  • [Far06] Gavril Farkas.
    The global geometry of the moduli space of curves, 2006.
    math.AG/0612251.
  • [GKM02] Angela Gibney, Sean Keel, and Ian Morrison.
    Towards the ample cone of $ \overline M\sb {g,n}$.
    J. Amer. Math. Soc., 15(2):273-294 (electronic), 2002. MR 1887636 (2003c:14029)
  • [GK92] Antonella Grassi and János Kollár.
    Log canonical models.
    In János Kollár, editor, Flips and abundance for algebraic threefolds, volume 211 of Astérisque, pages 29-45. Société Mathématique de France, Paris, 1992.
  • [Gro65] Alexander Grothendieck.
    Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II.
    Inst. Hautes Études Sci. Publ. Math., (24):231, 1965. MR 0199181 (33:7330)
  • [HKT06] Paul Hacking, Sean Keel, and Jenia Tevelev.
    Compactification of the moduli space of hyperplane arrangements.
    J. Algebraic Geom., 15(4):657-680, 2006. MR 2237265 (2007j:14016)
  • [HM82] Joe Harris and David Mumford.
    On the Kodaira dimension of the moduli space of curves.
    Invent. Math., 67(1):23-88, 1982.
    With an appendix by William Fulton. MR 664324 (83i:14018)
  • [Has03] Brendan Hassett.
    Moduli spaces of weighted pointed stable curves.
    Adv. Math., 173(2):316-352, 2003. MR 1957831 (2004b:14040)
  • [Has05] Brendan Hassett.
    Classical and minimal models of the moduli space of curves of genus two.
    In Geometric methods in algebra and number theory, volume 235 of Progress in mathematics, pages 160-192. Birkhäuser, Boston, 2005. MR 2166084 (2006g:14047)
  • [HH08] Brendan Hassett and Donghoon Hyeon.
    Log minimal model program for the moduli space of stable curves: The first flip, arXiv:0806.3444v1 [math.AG]
  • [Hau03] Herwig Hauser.
    The Hironaka theorem on resolution of singularities (or: A proof we always wanted to understand).
    Bull. Amer. Math. Soc. (N.S.), 40(3):323-403 (electronic), 2003. MR 1978567 (2004d:14009)
  • [HL07] Donghoon Hyeon and Yongnam Lee.
    Stability of tri-canonical curves of genus two.
    Math. Ann., 337(2):479-488, 2007. MR 2262795 (2007k:14052)
  • [Mor08] Donghoon Hyeon and Ian Morrison.
    Stability of tails and 4-canonical models, arXiv:0806.1269v1 [math.AG]
  • [KT06] Sean Keel and Jenia Tevelev.
    Geometry of Chow quotients of Grassmannians.
    Duke Math. J., 134(2):259-311, 2006. MR 2248832 (2007m:14017)
  • [KM98] János Kollár and Shigefumi Mori.
    Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics.
    Cambridge University Press, Cambridge, 1998.
    With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
  • [LMB00] Gérard Laumon and Laurent Moret-Bailly.
    Champs algébriques, volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics.
    Springer-Verlag, Berlin, 2000. MR 1771927 (2001f:14006)
  • [Mum77] David Mumford.
    Stability of projective varieties.
    Enseignement Math. (2), 23(1-2):39-110, 1977. MR 0450272 (56:8568)
  • [Ray72] Michel Raynaud.
    Flat modules in algebraic geometry.
    Compositio Math., 24:11-31, 1972. MR 0302645 (46:1789)
  • [SB06] Nicholas I. Shepherd-Barron.
    Perfect forms and the moduli space of abelian varieties.
    Invent. Math., 163(1):25-45, 2006. MR 2208417 (2007e:14070)
  • [Sch91] David Schubert.
    A new compactification of the moduli space of curves.
    Compositio Math., 78(3):297-313, 1991. MR 1106299 (92d:14018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14E30, 14H10

Retrieve articles in all journals with MSC (2000): 14E30, 14H10


Additional Information

Brendan Hassett
Affiliation: Department of Mathematics, Rice University, 6100 Main St., Houston, Texas 77251-1892
Email: hassett@math.rice.edu

Donghoon Hyeon
Affiliation: Department of Mathematics, Northern Illinois University, DeKalb, Illinois 60115
Address at time of publication: Department of Mathematics, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755
Email: hyeon@math.niu.edu, hyeond@marshall.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04819-3
Received by editor(s): November 28, 2007
Published electronically: March 10, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society