Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the cohomology groups of holomorphic Banach bundles

Author: László Lempert
Journal: Trans. Amer. Math. Soc. 361 (2009), 4013-4025
MSC (2000): Primary 32L05, 32L10, 58B15
Published electronically: March 12, 2009
MathSciNet review: 2500876
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a compact complex manifold $ M$ and introduce the notion of two holomorphic Banach bundles $ E,F$ over $ M$ being compact perturbations of one another. Given two such bundles we show that if the cohomology groups $ H^{q}(M,E)$ are finite dimensional, then so are the cohomology groups $ H^{q}(M,F)$; as well as a more precise result in the same spirit.

References [Enhancements On Off] (What's this?)

  • [B] L. Bungart, On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers, Topology 7 (1967), 55-68. MR 0222338 (36:5390)
  • [CS] H. Cartan, J.P. Serre, Un théorème de finitude concernant les variétés analytiques compactes, C. R. Acad. Sci. Paris 237 (1953), 128-130. MR 0066010 (16:517e)
  • [E] M. Erat, The cohomology of Banach space bundles over $ 1$-convex manifolds is not always Hausdorff, Math. Nachr. 248/249 (2003), 97-101. MR 1950717 (2004a:32016)
  • [G] I. Gohberg, A factorization problem for operator functions (Russian), Izv. Akad. Nauk SSSR 28 (1964), 1055-1082. MR 0174994 (30:5182)
  • [GL] I. Gohberg, J. Leiterer, General theorems on the factorization of operator-valued functions with respect to a contour, I, (Russian), Acta Sci. Math 34 (1973), 103-120; II, Acta Sci. Math 35 (1973), 39-59. MR 0333790 (48:12113); MR 0333791 (48:12114)
  • [K] J. Kim, Holomorphic Banach bundles over compact bases, Math. Z., to appear.
  • [Li1] J. Leiterer, Banach coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978), 91-109. MR 517643 (80b:32026)
  • [Li2] J. Leiterer, A finiteness theorem for holomorphic Banach bundles, Ann. Scuola Norm. Sup. Pisa VI (2007), 15-37. MR 2341512
  • [Le1] L. Lempert, The Dolbeault complex in infinite dimensions, I, J. Amer. Math. Soc. 11 (1998), 485-520. MR 1603858 (99f:58007)
  • [Le2] L. Lempert, Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier Grenoble 49 (1999), 1293-1304. MR 1703089 (2001d:32027)
  • [LP] L. Lempert and I. Patyi, Analytic sheaves in Banach spaces, Ann. Sci. École Norm. Sup. 40 (2007), 453-4863.
  • [M] E. Michael, Continuous selections, I. Ann. of Math. (2) 63 (1956), 361-382. MR 0077107 (17:990e)
  • [RS] R.M. Range, Y.-T. Siu, Uniform estimates for the $ \overline{\partial }$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. MR 0338450 (49:3214)
  • [Sc] L. Schwartz, Homomorphismes et applications complètement continues, C. R. Acad. Sci. Paris 236 (1953), 2472-2473. MR 0057457 (15:233b)
  • [Sk] H. Skoda, Fibrés holomorphes à base et à fibre de Stein, Invent. Math. 43 (1977), 97-107. MR 0508091 (58:22657)
  • [V] D. Vogt, Vektorwertige Distributionen als Randverteilungen holomorpher Funktionen, Manuscripta Math. 17 (1975), 267-290. MR 0407593 (53:11365)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32L05, 32L10, 58B15

Retrieve articles in all journals with MSC (2000): 32L05, 32L10, 58B15

Additional Information

László Lempert
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395

Received by editor(s): May 4, 2007
Published electronically: March 12, 2009
Additional Notes: This research was partially supported by NSF grants DMS0203072 and 0700281
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society