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THE MILNOR FIBER CONJECTURE
AND ITERATED BRANCHED CYCLIC COVERS

P. J. LAMBERSON

Abstract. In this paper we prove the Milnor Fiber Conjecture of Neumann
and Wahl for a class of isolated complete intersection singularities obtained by
taking iterated branched cyclic covers of the singularity link. We also show that
if the Milnor Fiber Conjecture holds for a given splice diagram, then it holds
for any equivalent diagram satisfying the semigroup condition. We illustrate
the application of these theorems in an example and discuss the relationship
of these singularities with Neumann and Wahl’s Splice Type Conjecture.

1. Introduction

The local topology of a normal complex surface singularity is completely de-
termined by a canonically associated 3-manifold called the link of the singularity.
Michael Artin first asked the question: What analytic invariants of the singularity
are determined by the topology and when? Since Artin’s question, many conjec-
tures have appeared suggesting a strong relationship between the analytic invariants
of such a singularity and its topology under certain restricting assumptions on the
topology of the link (e.g. [10, 11, 12, 13, 18, 19]). These conjectures overlap at vary-
ing levels of generality and provide both motivation and support for one another.
Several of the conjectures have been verified for large families of singularities. Re-
cently however, counterexamples have been discovered to many of these conjectures
by Luengo-Velasco, Melle-Hernandez and Némethi [8].

Let X be a complete intersection surface, given as the zero locus of f : (Cn, o) →
(Cn−2, o), with an isolated singularity at the origin o ∈ Cn. The link Σ of the
singularity (X, o) is the real three-dimensional manifold given by the intersection
of X with a sufficiently small sphere S2n−1

ε centered at the origin. The link is well
defined for ε sufficiently small, and X ∩ B2n

ε is homeomorphic to the cone on Σ.
Thus, the link completely encodes the local topology of the singularity. The Milnor
fiber for this singularity is F := f−1(λ) ∩ B2n

ε , where λ is a general point of Cn−2

sufficiently close to the origin and B2n
ε is a sufficiently small ball about the origin

in Cn. It is a smooth simply connected compact complex surface with boundary
diffeomorphic to Σ (see e.g. [9, 7]).
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One conjecture that notably survived the counterexamples of [8] is the Casson
Invariant Conjecture (CIC), which was one of the first such conjectures to have
appeared. Formulated in 1990 by Neumann and Wahl [16], the CIC applies to
normal surface singularities with link an integral homology three sphere, and says
that for such a singularity the Casson invariant of the link λ(Σ) equals one-eighth
the signature of the Milnor fiber σ(F ) [16]. By formulas of Laufer and Durfee,
σ(F ) is equivalent to classical analytic invariants of the singularity such as the
Milnor number (b2(F )) and the geometric genus. The interest in this conjecture, as
Neumann and Wahl point out, is that it “suggests that the Milnor fiber is a ‘natural’
4-manifold which is attached to its boundary Σ,” and that “analytic invariants like
the Milnor number and geometric genus are determined by the link” [18]. This is
not the case for general hypersurface singularities.

Several techniques have been applied towards proving the CIC, and it has been
verified in non-trivial cases [1, 3, 11, 16, 18]. Computing the Casson invariant of Σ
is not challenging. In fact, the integral homology spheres that arise as singularity
links are classified by splice diagrams [2]. These diagrams represent such a singu-
larity link as being built up from well understood pieces, the Brieskorn spheres,
by a topological operation called splicing. The splice decomposition of a homology
sphere link is the well known Jaco-Shalen-Johannsen (JSJ) decomposition from 3-
manifold topology. The Casson invariant is additive under the splicing operation
and known for the Brieskorn spheres, so the Casson invariant of a given homology
sphere link can be easily computed from the corresponding diagram [16]. On the
other hand, computing the signature of F is usually extremely difficult, and even in
the cases where the CIC has been proven, often little is known about the topology
of F . These proofs generally proceed by reformulating the conjecture in terms of
the geometric genus of (X, o), which is more easily computed from defining equa-
tions, and thus bypass the difficulty of understanding the topology of F directly
(e.g. [16, 18]).

In 2005 Neumann and Wahl published two papers suggesting that singularities
with homology sphere link can be entirely understood from the JSJ, or splice,
decomposition of the link. They extend the operation of splicing of links to a
“splicing of the defining equations” [18], constructing equations for a normal surface
singularity with link of a given topology. A singularity arising from this construction
is called a splice type singularity, and they formulate the Splice Type Conjecture
(STC): Every complete intersection surface singularity with homology sphere link
is of splice type [18, 19]. For splice type singularities, they also formulate the
Milnor Fiber Conjecture (MFC), which gives a direct topological construction of the
Milnor fiber in terms of the splice decomposition of the link [18]. The conjectured
construction implies the CIC for splice type singularities [18].

In this paper we generalize Neumann and Wahl’s proof of the MFC for hyper-
surfaces given by an equation of the form f(x, y) + zn = 0 to an infinite family of
splice type complete intersection singularities obtained by taking iterated branched
cyclic covers of the link. These are the only singularities for which the MFC is
known to hold.

2. Background

In sections 2.1-2.4 we recall relevant terminology and results needed in the rest of
the paper. In section 2.1 we define the two main objects under study, the link and
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the Milnor fiber, and describe classical results regarding these objects. In section
2.2 we give the classification of integral homology sphere links by splice diagrams.
In section 2.3 we define the splice type equations and describe the Splice Type
Conjecture. In this section we also recall a few facts about semigroups. In section
2.4 we describe the Milnor Fiber Conjecture.

2.1. The link and the Milnor fiber. Let X be a complete intersection surface,
given as the zero locus of f : (Cn, o) → (Cn−2, o), with an isolated singularity at the
origin o ∈ Cn. Let r : Cn → [0,∞) be a real analytic function so that r−1(0) = o.
As in [7], for any set S ⊂ Cn let

Sr≤ε = {z ∈ S| r(z) ≤ ε},

and similarly for Sr>ε, Sr<ε and so on. By an application of the Curve Selection
Lemma (see e.g. [9]), r|X has only finitely many critical values.

Proposition 2.1 ([7]). Let ε > 0 be such that Xr≤ε is compact and r|X−o has no
critical value in (0, ε]. Then Xr=ε is a compact real-analytic submanifold of X and
Xr≤ε is homeomorphic to the cone on Xr=ε.

The submanifold Xr=ε is called the link of the singularity. The following propo-
sition implies that the link is well defined regardless of the choice of r and ε subject
to the assumptions of Proposition 2.1.

Proposition 2.2 ([7]). Let r, r′ : X → [0,∞) such that r−1(0) = (r′)−1(0) = o.
Let ε > 0 be such that the hypotheses of Proposition 2.1 are satisfied by r and
ε. Then if ε′ > 0 is such that Xr′≤ε′ ⊂ Xr<ε, the hypotheses of Proposition 2.1
are also satisfied by r′ and ε′ and there exists a diffeomorphism of Xr≤ε,r′≥ε′ onto
[0, 1] × Xr=ε mapping Xr=ε onto {0} × Xr=ε and Xr′=ε′ onto {1} × Xr=ε.

Typically r(z) is taken to be |z|, and then the link is just X intersected with the
round sphere S2n−1

ε centered at the origin, but sometimes it is convenient to work
with a “stretched” link by choosing a different r.

For δ > 0, let Nδ denote the open δ neighborhood of the origin in Cn−2. There
exists a δ > 0 sufficiently small so that f is a local submersion along f−1(Nδ)r=ε.
Let Cf denote the points of f−1(Nδ)r<ε where f fails to be a submersion. Let Df

denote the image f(Cf ) in Nδ. Then we have

Theorem 2.3 ([7]). For δ > 0 as above,

(1) f : f−1(Nδ)r=ε → Nδ is a C∞-trivial fiber bundle.
(2) Cf has dimension n − 3.
(3) Df is a hypersurface of dimension n − 3 in Nδ.
(4) The pair

f :
(
f−1(Nδ − Df )r≤ε, f

−1(Nδ − Df )r=ε

)
→ Nδ − Df

is a C∞-fiber bundle pair, each fiber of which is a complex analytic surface
with boundary.

A smooth fiber f−1(λ)r≤ε with λ in Nδ − Df is called a Milnor fiber of the
singularity. Part (1) of Theorem 2.3 implies that the boundary of a Milnor fiber is
diffeomorphic to the link.
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2.2. Splice diagrams. A splice diagram is a finite tree with no valence two ver-
tices. Valence one vertices are called leaves, and vertices of valence greater than
two are called nodes. The tree has integer edge weights on each edge at each node.
An example of a typical splice diagram is

◦

◦
2��

��
��

�

◦11 13
2

◦�������

◦
3
������� ◦

5

�������

Splice diagrams classify integral homology sphere links:

Theorem 2.4 ([2]). Integral homology sphere singularity links are in one-to-one
correspondence with splice diagrams that satisfy

(1) weights around a node are positive and pairwise coprime;
(2) weights on an edge ending in a leaf are > 1;
(3) all edge determinants are positive.

The third condition is a condition on the weights on any edge connecting two
nodes. For such an edge e, the edge determinant, det(e), is the product of the
weights on the edge, minus the product of the weights adjacent to the edge. For
example, in the diagram

◦

◦
2��

��
��

�

◦89 19e
3

◦�������

◦
5

������� ◦
7

�������

8 ◦

the edge determinant det(e) = 89 · 19− 2 · 5 · 7 · 8 · 3 = 11. The condition is that for
every edge e connecting two nodes, det(e) > 0.

To give the topological meaning of a splice diagram we first describe the manifold
associated with a one node splice diagram and then describe an operation on two
such manifolds called splicing that corresponds to joining two diagrams. A one
node splice diagram with pairwise coprime edge weights α1, . . . , αr corresponds to
the Brieskorn sphere, Σ(α1, . . . , αr). The Brieskorn sphere Σ(α1, . . . , αr) is the link
of the Brieskorn complete intersection,

V (α1, . . . , αr) = {z ∈ Cr| ai1z
α1
1 + · · · + airz

αr
r = 0}r−2

i=1 ,

where the coefficient matrix
(
aij

)
satisfies the condition that every (r−2)× (r−2)

submatrix is non-singular [5]. For example, the Poincaré homology sphere Σ(2, 3, 5)
is the link of the singularity given by x2 + y3 + z5 = 0 and is represented by the
splice diagram

◦◦ 2 3 ◦

◦

5

Each leaf wi of the diagram corresponds to the knot in Σ(α1, . . . , αr) cut out by
setting the corresponding variable, zi, equal to zero in V (α1, . . . , αr). We indicate
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this knot by placing an arrow at the leaf. For example,

◦◦ 2 3 ��

◦

5

indicates the knot obtained by setting y = 0 inside the link Σ(2, 3, 5) of the singu-
larity given by x2 + y3 + z5 = 0.

A second description of the Brieskorn spheres is more familiar to 3-manifold
topologists. The Brieskorn sphere Σ(α1, . . . , αr) is the genus zero Seifert fibered
manifold M(0; (α1, β1), (α2, β2), . . . , (αr, βr)), where β1, . . . , βr satisfy

α1 · · ·αr ·
r∑

i=1

βi

αi
= 1

(see [15]). This manifold can be constructed as follows. Start with the surface
obtained by removing r disjoint disks from a two sphere, S = S2 − (D2

1 ∪ · · · ∪D2
r),

and take the Cartesian product with a circle, S′ = S × S1. Then the boundary of
S′ is r disjoint tori T1, . . . , Tr, where Ti = ∂D2

i ×S1. The fundamental group of S′

is generated by the boundaries of the i removed disks in S, and one generator for
the S1 in the product S × S1. Glue a solid torus Hi to each boundary component
Ti by the map φi : ∂Hi → Ti that sends the meridian of ∂Hi to αi · ∂D2

i + βi · S1,
where ∂D2

i and S1 are the generators of π1(S′). Then M(0; (α1, β1), . . . , (αr, βr)) =
S′ ∪φ1,...φr

(H1 ∪ · · · ∪ Hr). The knot obtained by setting zi = 0 in the Brieskorn
equations is the core of the i-th solid torus Hi and is called the degree αi singular
fiber.

A diagram with more than one node can be obtained by joining together, or
splicing, one node diagrams at their leaves. Topologically, this corresponds to re-
moving a tubular neighborhood of each of the knots corresponding to the leaves
along which the splicing occurs, and then gluing together the remaining knot ex-
teriors along their torus boundaries matching meridian to longitude and longitude
to meridian. For example

◦

◦
2��

��
��

�

◦11 13
2

◦�������

◦
3
������� ◦

5

�������

represents the Brieskorn spheres Σ(2, 3, 11) and Σ(2, 5, 13) spliced together along
the degree 11 singular fiber of Σ(2, 3, 11) and along the degree 13 singular fiber of
Σ(2, 5, 13). Such a diagram corresponds to an integral homology sphere link if and
only if conditions (1) and (3) of Theorem 2.4 are satisfied. The decomposition of a
homology sphere link into Brieskorn spheres is the well known JSJ-decomposition
from 3-manifold topology.

The second condition of Theorem 2.4 is only necessary in order to guarantee
a one-to-one correspondence between diagrams and homology sphere links, and it
will often be useful to drop this condition. A diagram not satisfying this condition
is called non-minimal. Call two splice diagrams that represent the same (up to
orientation preserving homeomorphism) homology sphere equivalent diagrams. Any
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non-minimal splice diagram can be reduced to the unique equivalent minimal splice
diagram by repeatedly applying the following operations [2]:

∆1 ◦p1 p2 ∆2
�������� ∆1 ∆2

◦

1

and, for r > 2,

∆1

◦
p1
��

��
��

��

◦1

∆1

◦
p1
��

��
��

��

∆2
p2

pr

��
��

��
��

�������� ∆2
p2

pr

��
��

��
��

∆r ∆r

2.3. Splice type singularities and the Splice Type Conjecture. In [19] Neu-
mann and Wahl give an algorithm to write explicit equations generalizing the
Brieskorn equations for an isolated complete intersection surface singularity of given
topology when the splice diagram for the link satisfies the additional semigroup
condition. A singularity that can be obtained by this construction is said to be
of splice type, and they make the Splice Type Conjecture (STC): Every complete
intersection surface singularity with integral homology sphere link is of splice type.1

Equivalently, the minimal splice diagram of the link of an isolated complete
intersection with homology sphere link must satisfy the semigroup condition. The
conjecture has been confirmed for several families of singularities [14, 17, 18, 20].

Before describing the semigroup condition and defining the splice type equations,
we recall some notation from [18, 19]. Let ∆ be a splice diagram for a homology
sphere Σ. Let δv denote the valence of a vertex v. For an edge e at v, let dve

denote the weight on e at v and let dv denote the product Πdve over all edges e at
v. For any two vertices, v and w, let lvw be the product of weights adjacent to but
not on the shortest path from v to w. If v and w are leaves of the diagram, then
they correspond to knots in Σ, and lvw is their linking number in Σ [2]. Let l′vw

denote the same product, excluding weights adjacent to v and w. Let ∆ve be the
subdiagram of ∆ cut off from v by e. For example, in the splice diagram,

◦

◦
2��

��
��

�

◦11 13e
2

◦�������

v

��

w

◦

3
�������

w′◦
5

�������

1Splice diagrams and splice type equations are also defined in the context of rational homology
sphere links, where the splice type singularity associated with a splice diagram is the universal
abelian cover of a singularity with the given topology [19]. The original conjecture was: Any
Q-Gorenstein singularity with Q-homology sphere link has as universal abelian cover a splice type
complete intersection. The conjecture has since proven false in this generality [8, 18, 19].
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Table 1. Splice diagram notation.

δv valence of v

dve weight on e at v

dv product of dve over all edges e at v

product of all weights adjacent to but not on the shortest
lvw path from v to w

product of all weights adjacent to but not on the shortest
l′vw path from v to w excluding weights adjacent to v and w

∆ve subdiagram of ∆ cut off from v by e

dve = 11, dv = 66, lvw = 30, l′vw = 5 and

∆ve = ◦◦ 13
2

◦�������

◦
5

�������

For reference these terms are collected in Table 1.
A splice diagram ∆ satisfies the semigroup condition if for each node v and edge

e at v,

(2.1) dve ∈ N〈l′vw|w is a leaf of ∆ve〉,

or equivalently,

(2.2) dv ∈ N〈lvw|w is a leaf of ∆ve〉.

For example, in the diagram above the semigroup condition (2.1) at the node v for
the edge e is dve = 11 ∈ N〈5, 2〉. This condition is satisfied since 11 = 1·5+3·2. The
condition (2.1) is trivially satisfied for any edge leading to a leaf, since the relevant
semigroup is then N. The condition (2.2) at v for the edge e is dv = 66 ∈ N〈5, 2〉.
This is satisfied since 66 = 6 ·5+18 ·2. The condition (2.2) is also trivially satisfied
for any edge leading to a leaf.

Now, suppose that ∆ is a splice diagram satisfying the semigroup condition.
Assign a variable zw to each leaf w of ∆. Neumann and Wahl give equations in
these variables for a complete intersection surface with an isolated singularity at
the origin such that the link of the singularity is the homology sphere specified by
the diagram ∆.

The system of equations consists of δv − 2 equations for each node v of the
diagram, giving a total of n − 2 equations, where n is the number of leaves of ∆.
Since ∆ satisfies the semigroup condition, for each node v and edge e at v we have

(2.3) dve =
∑

αvwl′vw
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where the sum is taken over all leaves w in ∆ve (one could also use the equivalent
form of the semigroup condition (2.2)). Define an admissible monomial to be a
monomial of the from ∏

leaves w of ∆ve

zαvw
w .

Note that there may be several admissible monomials associated to a given node
and edge, since there may be several choices of coefficients αvw satisfying (2.3). For
each edge e at v, choose an admissible monomial Mve and form δv −2 equations by

(2.4)
∑

edges e at v

aieMve, i = 1, . . . , δv − 2,

where the δv−2 × δv coefficient matrix
(
aie

)
satisfies the condition that every δv −

2× δv − 2 submatrix is non-singular. Repeating for each node v of the diagram, we
obtain a total of n− 2 equations in n variables. This system of equations is said to
be of strict splice type.

For example, assigning variables z1, z2, z3, z4 to the leaves in the diagram

z1

◦

◦
2��

��
��

�

◦11 13
2

◦							

z4

z2
◦

3
							

z3
◦

5

�������

the admissible monomials at the left node are z2
1 , z3

2 and z3
3z4. At the right node

they are z5
3 , z2

4 and z3
1z2

2 or z1z
5
2 . Thus, one choice of strict splice type equations

for this diagram is

z2
1 + z3

2 + z3
3z4 = 0,

z5
3 + z2

4 + z3
1z2

2 = 0.

For another example see section 3.3.
Notice that the equations at a node v are weighted homogenous equations where

the weight on the variable zw is lvw and the weight of each admissible monomial is
dv. In [14] it is shown that the only weighted homogenous normal surface singular-
ities with integral homology sphere link are the Brieskorn complete intersections.
Thus, as one can easily confirm by computation, in the one node case the strict
splice type equations are the Brieskorn equations. One can view the semigroup con-
dition and the resulting equations as motivated by the goal of constructing weighted
homogenous equations at the nodes where the total weight matches the weight of
the Brieskorn equations.

The weight lvw is called the v-weight of zw. If one adds terms of v-weight strictly
greater than dv to equation (2.4) to obtain

(2.5)
∑

edges e at v

aieMve + Hvi, i = 1, . . . , δv − 2,

or makes a different choice of admissible monomials, then the resulting system
defines a singularity that is an equisingular deformation of the one defined by the
strict splice type equations (2.4). Here each Hvi is a convergent power series in the
zw consisting of monomial terms each of which has v-weight strictly greater than
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dv. Such a system of equations is said to be of splice type, and Neumann and Wahl
prove

Theorem 2.5 ([18, 19]). A system of equations of splice type defines an isolated
complete intersection surface singularity with link Σ the homology sphere specified
by the splice diagram ∆. Furthermore, the knot (Σ, Kw) indicated by a leaf w of ∆
is cut out by setting the corresponding variable zw equal to zero, and this knot is
fibered in Σ with fibration given by zw/|zw| : Σ − Kw → S1.

Neumann and Wahl describe the construction of the splice type equations as
“splicing the defining equations” [18], corresponding to splicing the links on the
boundary. In section 2.4 we will see that in the case of a splice type singularity
they conjecture a similar splicing of the Milnor fibers.

First, we recall some terminology and facts about the semigroups arising in the
semigroup condition. These semigroups are always numeric semigroups. A numeric
semigroup Γ is a subsemigroup of N = Z≥0 such that N−Γ is finite. The conductor
of a numeric semigroup Γ is defined to be the smallest number c(Γ) ∈ N such that
γ ≥ c(Γ) implies γ ∈ Γ. For example, for p, q ∈ N coprime,

c(N〈p, q〉) = (p − 1)(q − 1).

We will also need the following result on the conductor of certain semigroups.

Lemma 2.6 ([18]). Suppose Γi are numeric semigroups for i = 1, . . . , n and
p1, . . . , pn are pairwise coprime integers with pi ∈ Γi. Write P = p1 · · · pn and
Pi = P/pi. Let

Γ = P1Γ1 + · · · + PnΓn.

Then

c(Γ) =
n∑

i=1

Pi(c(Γi) − 1) + (n − 1)P + 1.

2.4. The Milnor Fiber Conjecture. The MFC describes a topological construc-
tion of the Milnor fiber for splice type singularities by extending the operation of
splicing homology sphere links to a “splicing” of the associated Milnor fibers. The
Casson invariant is additive under splicing, as is the signature of the Milnor fiber
under the conjectured topological construction. The CIC is known for Brieskorn
complete intersections, and thus the MFC implies the CIC for singularities of splice
type [18]. However, the MFC provides more than the CIC: It gives a complete
picture of the topology of F in terms of the JSJ-decomposition of the link.

We now describe the conjectured construction (see Figure 1). Let Σ be the link
of a splice type singularity specified by a diagram ∆ that satisfies the semigroup
condition. Decompose Σ as the splice of two homology spheres Σ1 and Σ2 corre-
sponding to a decomposition of the diagram into ∆1 and ∆2. Both ∆1 and ∆2 also
satisfy the semigroup condition, and thus Σ1 and Σ2 are the links of splice type
singularities with Milnor fibers F1 and F2 where ∂Fi = Σi. Let wi ∈ ∆i be the
leaves along which the splicing occurs. Then wi corresponds to a knot Ki ⊂ Σi

given by setting the corresponding variable to zero in the splice type equations.
The knot Ki is fibered in Σi. Let Gi denote the fiber of Ki ⊂ Σi, so Gi is a

real 2-manifold in Σi with boundary Ki. Push Gi into Fi, keeping the boundary
∂Gi = Ki ⊂ Σi fixed, so that it is properly embedded. Let F ◦

i denote the result

of removing an open tubular neighborhood, Gi ×
◦
D2, of this properly embedded
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Gi. Then the boundary of F ◦
i consists of the exterior of the knot Ki, Σi − N(Ki),

and Gi × S1. Join F ◦
1 and F ◦

2 by gluing in a G1 × G2 as follows. The boundary of
G1×G2 is (∂G1×G2)∪ (G1×∂G2) = (K1×G2)∪ (G1×K2) = S1×G2∪G1×S1.
Glue the G1 × S1 to the corresponding piece of the boundary of F ◦

1 and similarly
glue the S1×G2 to the corresponding piece of the boundary of F ◦

2 . Identify the rest
of the boundary of F ◦

1 , the exterior of K1 ⊂ Σ1, with the exterior of the K2 ⊂ Σ2

portion of the boundary of F ◦
2 by matching meridian to longitude and longitude to

meridian as in the splicing construction. Then F̄ has boundary Σ and the Milnor
Fiber Conjecture is:

Conjecture 2.7 ([18]). The Milnor fiber F of the splice type singularity specified
by ∆ is homeomorphic to F̄ .

Note that this conjecture applies to a diagram ∆ satisfying the semigroup condi-
tion with a distinguished edge e of ∆. We will say that the MFC holds for ∆ if the
construction of F̄ described above corresponding to decomposing ∆ along any of
its edges yields F . We show in section 3.2 that if the MFC holds for a diagram ∆,
then it holds for any equivalent diagram that also satisfies the semigroup condition.

3. Iterated branched cyclic covers

and the Milnor Fiber Conjecture

In [18] Neumann and Wahl proved the MFC for hypersurface singularities given
by an equation of the form f(x, y) + zn = 0. The link of such a singularity is a
branched cyclic cover of S3 branched along the graph knot cut out by the plane
curve f(x, y) = 0. In section 3.1 we generalize this result to iterated branched cyclic
covers of homology sphere links branched along graph knots (Theorem 3.4).

In order to widen the class of examples to which this theorem applies, in section
3.2 we prove that if the MFC holds for a given diagram, then the MFC also holds
for any equivalent diagram that also satisfies the semigroup condition (Theorem
3.8).

Beginning with a hypersurface f(x, y) + zn = 0, and repeatedly applying Theo-
rems 3.4 and 3.8, one has an abundance of singularities for which the MFC holds.
These are the only known examples. In section 3.3 we go through such an example
in detail. In section 3.4 we discuss the relationship between these examples and the
Splice Type Conjecture.

3.1. Branched cyclic covers and the Milnor fiber. Neumann and Wahl give a
necessary and sufficient condition for the k-fold branched cyclic cover of a homology
sphere link Σ′ branched along a graph knot K to be a homology sphere link Σ in
[16]. We recall that condition here.

Suppose Σ′ is a homology sphere given by a splice diagram ∆, and (Σ′, K) is a
graph knot indicated by a distinguished leaf ∗ of ∆. Each edge of ∆ has either one
or two edge weights attached to it, depending on if the edge connects a node and
a leaf of the diagram or connects two nodes. Following Neumann and Wahl, call
the weight on an edge “near” or “far” if it is on the end of the edge closest to or
furthest from ∗ in ∆. For example, in the following diagram the weights n are near
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a. (Σi, Ki) b. (Σi, Ki) and Gi

c. Gi pushed into Fi d. F ◦
i

e. Glue G1 × G2 to F ◦
1 and F ◦

2 along the boundary.

Figure 1. The steps in the MFC construction.

with respect to the leaf ∗ and the weights f are far:

◦

◦
n��

��
��

�

◦f n
n

◦�������
n

◦◦
n
������� ◦

n

�������

◦f n f ∗◦

Denote by ∆(∗, k) the diagram obtained from ∆ by multiplying all far edge weights
with respect to ∗ by k.
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Theorem 3.1 ([16]). The k-fold branched cyclic cover of Σ′ branched along K is
a homology sphere Σ if and only if k is prime to all near weights in ∆, and Σ is
then given by the splice diagram ∆(∗, k).

For example, we saw in section 2.3 that the homology sphere Σ′ specified by the
diagram

◦

◦
2��

��
��

�

◦11 13
2

◦�������

∗

◦
3
������� ◦

5

�������

is the link of the splice type singularity given by

z2
1 + z3

2 + z3
3z4 = 0,

z5
3 + z2

4 + z3
1z2

2 = 0.

The knot K indicated by the leaf ∗ is cut out by z4 = 0. The edge weights near
with respect to ∗ are 2, 3, 5 and 13, so the 7-fold branched cyclic cover of Σ′ with
branch set K is the homology sphere link Σ specified by the diagram

∆(∗, 7) = ◦

◦
2��

��
��

�

◦77 13
14

◦�������

◦
3
������� ◦

5

�������

The splice type equations for this diagram can be chosen as

z2
1 + z3

2 + z3
3z7

4 = 0,

z5
3 + z14

4 + z3
1z2

2 = 0,

and in these coordinates the branched cyclic covering φ :Σ → Σ′ is just (z1, z2, z3, z4)

→ (z1, z2, z3, z

7
4).

Now, suppose that ∆ satisfies the semigroup condition and that the MFC holds
for ∆. We will show that the MFC holds for ∆(∗, k) when ∆(∗, k) corresponds
to a homology sphere link as in Theorem 3.1. First, we prove that the branched
cyclic covering of the links Σ → Σ′ extends to a branched cyclic covering of the
corresponding Milnor fibers F → F ′.

Since Σ′ is the link of a splice type singularity and K corresponds to the leaf ∗
of ∆, K is cut out in Σ′ by setting the variable z∗ corresponding to ∗ in some splice
type equations for ∆ equal to zero. This knot is fibered with fibration given by
z∗/|z∗| : Σ′ −K → S1 (Theorem 2.5). Let G denote a fiber of this fibration. Then,

Theorem 3.2. F is a k-fold branched cyclic cover of F ′ branched along a copy of
G pushed into F ′ so that it is properly embedded.

This theorem is a generalization of the hypersurface case proved in [6]. Before
proving Theorem 3.2, we prove the following lemma, which describes how the splice
type equations for ∆(∗, k) can be obtained from equations for ∆.

Lemma 3.3. Replacing z∗ by zk
∗ in the splice type equations for ∆ gives splice type

equations for ∆(∗, k).
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Proof. Since both ∆ and ∆(∗, k) have the same underlying graph and differ only
in their weights, we will refer to nodes, edges and leaves in both of them simulta-
neously. For any node v and edge e at v let dve[∆] denote the weight on e at v in
∆ and dve[∆(∗, k)] the corresponding weight in ∆(∗, k). Then for any node v and
edge e at v,

dve[∆(∗, k)] =

{
dve[∆], ∗ /∈ ∆ve,

kdve[∆], ∗ ∈ ∆ve.

For a node v and leaf w, let l′vw[∆] denote the product of all the weights in ∆
adjacent to but not on the shortest path from v to w, not including the weights
around v and w and let l′vw[∆(∗, k)] denote the same product using the weights
from ∆(∗, k). Then, for any node v and edge e at v, for all leaves w ∈ ∆ve,

l′vw[∆(∗, k)] =

{
l′vw[∆], ∗ /∈ ∆ve or w = ∗,
kl′vw[∆], ∗ ∈ ∆ve and w �= ∗.

Now, fix a node v. Let δv be the number of edges at v. The semigroup condition
on the weights of ∆ allows us to write

dve[∆] =
∑

w∈∆ve

αvwl′vw[∆].

Recall that an admissible monomial associated to the edge e at v is a monomial of
the form ∏

leaves w of ∆ve

zαvw
w .

For each edge e at v, choose an admissible monomial for ∆, Mve[∆], and consider
the δv − 2 equations ∑

e

aieMve[∆] = 0, i = 1, . . . , δv − 2,

for sufficiently general coefficients aie. Repeating this for each node v ∈ ∆ we
obtain splice type equations for ∆.

Now, if ∗ /∈ ∆ve, then

dve[∆(∗, k)] = dve[∆] =
∑

w∈∆ve

αvwl′vw

=
∑

w∈∆ve

αvwl′vw[∆(∗, k)],

and thus one can choose the admissible monomial Mve[∆(∗, k)] for ∆(∗, k) to be the
same as Mve[∆]. Since ∗ /∈ ∆ve, the variable z∗ does not occur in Mve[∆(∗, k)] =
Mve[∆].

If ∗ ∈ ∆ve, then,

dve[∆(∗, k)] = kdve[∆] = k
∑

w∈∆ve

αvwl′vw[∆]

=
∑

w∈∆ve

αvwkl′vw[∆]

=
( ∑

w �=∗∈∆ve

αvwl′vw[∆(∗, k)]
)

+ αv∗kl′v∗[∆(∗, k)].
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Figure 2. The vector field v on X ′
r≤ε − p−1

n (0).

So, ∆(∗, k) satisfies the semigroup condition, and the admissible monomial
Mve[∆(∗, k)] can be chosen to be the same as the admissible monomial Mve[∆],
except that the power on z∗ is changed from αv∗ to αv∗k. Thus, the splice type
equations for ∆(∗, k) are obtained from those for ∆ simply by replacing z∗ with zk

∗
everywhere it occurs. �

We now prove Theorem 3.2.

Proof. Suppose that f : Cn → Cn−2 are splice type equations corresponding to ∆
and that z∗ = zn in these equations. By Lemma 3.3, f(k) : Cn → Cn−2 given by
f(k)(z1, . . . , zn) = f(z1, . . . , zn−1, z

k
n) are splice type equations for ∆(∗, k). Let

X = f−1
(k)(0)

and
X ′ = f−1(0)

be the corresponding splice type complete intersections.
Let r : Cn → [0,∞) be given by

r(z) = |z1|2 + · · · + |zn−1|2 + |zn|2k,

and let r′ : Cn → [0,∞) be given by

r′(z) = |z|2.
Choose ε2 sufficiently small so that Proposition 2.1 applies to both (X, o), r and
(X ′, o), r′, and so that r′|{z∈X′| zn=0} has no critical values in (0, ε2].

Let pn : Cn → C denote projection onto the n-th coordinate. In [4] Lemma 3.5,
Hamm constructs a vector field v on X ′

r′≤ε2 − p−1
n (0) (see Figure 2) such that

(1) the real part of 〈v(z), z〉 is positive and
(2) 〈v(z), grad log pn(z)〉 = 1.

The first condition ensures that r′(z) increases along integral curves of v and the
second guarantees that arg zn = zn

|zn| remains constant and |zn| increases along
integral curves of v (since grad log pn(z) = zn

|zn|2 grad pn(z)).
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Figure 3. The vector field ṽ extends v to X ′
r≤ε − o.

This vector field can be extended to a vector field ṽ on all of X ′
r′≤ε2−o (see Figure

3) so that the first condition holds, the second condition holds when zn �= 0, and
so that ṽ(z) is tangent to p−1

n (0) when zn = 0. The vector field can be constructed
locally at points of p−1

n (0) and then patched together with v using a partition of
unity to obtain ṽ:

For z ∈ X ′
r′≤ε2 − o with zn = 0, the map

Φ =
(
f, pn, r′

)
: Cn = R2n → Cn−2 × C × R = R2n−1

is regular in a neighborhood U of z. So, there exist real local coordinates u1, . . . , u2n

on U so that Φ(u1, . . . , un) = (u1, . . . , u2n−1) in these coordinates. In these coor-
dinates the vector field

2n−2∑
i=1

ui
∂

∂ui
+

∂

∂u2n−1

satisfies the desired conditions. Patching this together with v, using a partition of
unity, gives ṽ.

Then for η ∈ C sufficiently close to the origin, pushing out along integral curves
of ṽ provides an isotopy of {z ∈ X ′

r′≤ε2 | zn = η} to a fiber zn

|zn| = constant of K in
Σ′ (see Figure 4).

Fix such an η. Since all the properties of ṽ are local, ṽ can be extended except
near the origin to a vector field w on a neighborhood of X ′

r′≤ε2 so that

(1) w is tangent to the fibers of f ,
(2) the real part of 〈w(z), z〉 is positive,
(3) 〈w(z), grad log pn(z)〉 = 1 when zn �= 0 and
(4) w(z) is tangent to p−1

n (0) when zn = 0.
Let w be such an extension of ṽ on a neighborhood W of X ′

r′≤ε2 − o, outside of
{z ∈ Cn| |z|2 < ε20} for some ε20 < |η|2 (see Figure 5).

Choose δ > 0 so that Theorem 2.3 applies to f(k), r, ε
2. Choose δ′ > 0 so that

Theorem 2.3 applies to f, r′, ε2. Then choose λ ∈ Nδ ∩ Nδ′ so that

F = f−1
(k)(λ)r≤ε2
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Figure 4. Integral curves of ṽ provide an isotopy of {z ∈
X ′

r′≤ε2 | zn = η} to a fiber of K.

Figure 5. The vector field ṽ extends to a vector field w on nearby
fibers, away from the origin.

is a Milnor fiber for (X, o) and

F ′ = f−1(λ)r′≤ε2

is a Milnor fiber for (X ′, o) and F ′
r′≥ε20

⊂ W and so that Bη = {z ∈ F ′| zn = η} is
smooth.

The map p : F → F ′ given by (z1, . . . , zn) 
→ (z1, . . . , zn−1, z
k
n) is a k-fold

branched cyclic covering with branch set B0 := {z ∈ F ′| zn = 0}. It remains to
show that B0 is a copy of the fiber G of K in Σ′ that has been pushed into F ′ so
that it is properly embedded. Since the integral curves of w provide an isotopy of
Bη to G = {z ∈ Σ′ = F ′

r′=ε2 |
zn

|zn| = η
|η|} in F ′ (see Figure 6), it is sufficient to show

that B0 is isotopic to Bη in F ′.
Consider the set A consisting of all points α ∈ C for which Bα := {z ∈ F ′| zn =

α} is not smooth. This is a sub-variety of C not containing the origin and η, and
is thus zero-dimensional. So, there is a path γ : [0, 1] → C, diffeomorphic onto
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Figure 6. Integral curves of w provide an isotopy of Bη to G in F ′.

Figure 7. By Ehresmann’s fibration theorem, B0 is isotopic to Bη.

its image, such that γ(0) = o, γ(1) = δ and γ(t) /∈ A for any t. Let Bγ(t) =
{z ∈ F ′| zn = γ(t)} and B =

⋃
t∈[0,1] Bγ(t) ⊂ F ′. Then φ : B → [0, 1] given by

z 
→ γ−1(zn) is a proper submersion and thus, by Ehresmann’s fibration theorem,
is a C∞-trivial fibration and the fibers φ−1(0) = B0 and φ−1(1) = Bη are isotopic
(see Figure 7). �

Then, the main theorem is:

Theorem 3.4. Suppose that ∆ is a splice diagram satisfying the semigroup condi-
tion and that the Milnor Fiber Conjecture holds for ∆. Let ∗ ∈ ∆ be a distinguished
leaf. If k ∈ N is pairwise coprime to all near edge weights of ∆ with respect to ∗,
then the Milnor Fiber Conjecture also holds for ∆(∗, k).

Proof. Let (X ′, o) be a splice type singularity corresponding to ∆ and (X, o) a splice
type singularity corresponding to ∆(∗, k). Let Σ′ and F ′ be the link and Milnor
fiber of (X ′, o) and Σ and F be the link and Milnor fiber of (X, o). By Theorem 2.5,
Σ′ is the homology sphere specified by ∆ and Σ is the homology sphere specified
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Table 2. Corresponding objects in the base and in the cover.

singularity (X ′, o) (X, o)
diagram ∆ = ∆′

1
w1−→w2←− ∆′

2 ∆(∗, k) = ∆1
w1−→w2←− ∆2

link Σ′ = Σ′
1

K′
1−→K′

2←− Σ′
2 Σ = Σ1

K1−→K2←− Σ2

Milnor fiber F ′ = (F ′
1)

◦ ∪ G′
1 × G′

2 ∪ (F ′
2)

◦ F
?= F ◦

1 ∪ G1 × G2 ∪ F ◦
2

by ∆(∗, k). Let (Σ′, K) be the knot specified by ∗ ∈ ∆, so Σ is the k-fold branched
cyclic cover of Σ′ branched along K.

Σ⏐⏐

∂G = K −−−−→ Σ′

Let G be the fiber of K in Σ′. By Theorem 3.2, F is a k-fold branched cyclic cover
of F ′ branched along a copy of G pushed into F ′ so that it is properly embedded.

F⏐⏐

properly embedded G −−−−→ F ′

Decompose Σ as the splice of two homology spheres Σ1 and Σ2 corresponding to
a decomposition of the diagram ∆(∗, k) as

∆(∗, k) = ∆1
w1−→w2←− ∆2.

Without loss of generality suppose that the leaf ∗ is in ∆2. Since ∆ and ∆(∗, k)
have the same underlying graph, there is a corresponding decomposition

∆ = ∆′
1

w1−→w2←− ∆′
2

where ∆1 = ∆′
1(w1, k) and ∆2 = ∆′

2(∗, k). The diagrams ∆i and ∆′
i, must also

satisfy the semigroup condition, and thus Σi and Σ′
i are links of splice type sin-

gularities, with Milnor fibers Fi and F ′
i respectively. The leaves wi of ∆i and ∆′

i

correspond to fibered knots (Σi, Ki) and (Σ′
i, K

′
i), along which the splicing occurs.

Let Gi be the fiber of the knot (Σi, Ki) and let G′
i be the fiber of the knot (Σ′

i, K
′
i).

By assumption the MFC holds for ∆, and thus F ′ decomposes as

(3.1) F ′ = (F ′
1)

◦ ∪ G′
1 × G′

2 ∪ (F ′
2)

◦,

where (F ′
i )

◦ is the fiber F ′
i minus a tubular neighborhood of a properly embedded

fiber G′
i of K ′

i as described in section 2.4.
We will show that on taking the branched cyclic cover of F ′ branched along a

properly embedded G, the pieces in the MFC decomposition (3.1) for F ′ lift to the
desired pieces in the conjectured decomposition of F :

(3.2)

F F ◦
1 ∪ G1 × G2 ∪ F ◦

2⏐⏐
 ⏐⏐
?

properly embedded G −−−−→ F ′ (F ′
1)

◦ ∪ G′
1 × G′

2 ∪ (F ′
2)

◦

Table 2 summarizes the situation.
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First, we describe the topology of the branch set G in terms of the splice decom-
position of Σ′ and then position it with respect to the decomposition (3.1). Let
l = l∗w2 be the linking number of the knot K and K ′

2 in Σ′
2 [2]. Then, as shown

in [2], the splice decomposition Σ′ = Σ′
1

K′
1−→ K′

2←− Σ′
2 leads to a description of G

as l parallel copies of G′
1 and one copy of the fiber corresponding to the diagram

∆′
2 −→∗ punctured l times.
To see this, note that from the definition of linking number the knot K ′

2 in Σ′
2

intersects each fiber of ∆′
2 −→∗ l times, so when we remove a tubular neighborhood

of K ′
2 in Σ′

2 each fiber of ∆′
2 −→∗ is punctured l times and intersects the boundary

of the tubular neighborhood of K ′
2 in l parallel copies of the meridian of K ′

2. Under
the gluing map these meridians match up with l copies of the longitude of (Σ′

1, K
′
1)

on the boundary of the removed tubular neighborhood of (Σ′
1, K

′
1). So in Σ′ each l

times punctured fiber of ∆′
2 −→∗ is glued along the boundary to l parallel copies of

the fiber G′
1 forming a fiber of K. Since the fibration of a link in a compact three

manifold is unique up to isotopy (see [2], p. 34), this fiber must be diffeomorphic
to G.

The branch set G can be positioned with respect to the decomposition (3.1)
of F ′ so that it lies entirely in G′

1 × G′
2 ∪ (F ′

2)◦. Then G intersects G′
1 × G′

2 in l
parallel copies of G′

1. The intersection with (F ′
2)◦ is obtained by pushing the fiber

corresponding to ∆′
2 −→∗ into F ′

2, so that it is properly embedded and transverse
to the properly embedded fiber G′

2, and then removing a tubular neighborhood of
this G′

2.
By Theorem 3.2, F1 is a branched cyclic cover of F ′

1 branched along a properly
embedded copy of G′

1. The branch set G′
1 lifts to a properly embedded copy of G1

in F1. Removing a neighborhood of the properly embedded G′
1 in the base and

taking the same cover gives F1 minus a neighborhood of the properly embedded
G1, which is exactly F ◦

1 . Thus, in the branched cyclic cover (3.2) (F ′
1)◦ lifts to F ◦

1 .
Furthermore, the gluing region in the base, ∂(F ′

1)
◦ = G′

1 × S1, lifts to the gluing
region in the cover, G1 × S1.

By Theorem 3.2, F2 is the branched cyclic cover of F ′
2 branched along a properly

embedded version of the fiber of the knot specified by the diagram ∆′
2 −→∗. Pushing

G′
2 into F ′

2 so that it is properly embedded and transverse to the properly embedded
fiber of ∆′

2 −→∗, G′
2 intersects the branch set in l points. On taking the branched

cyclic cover, this properly embedded G′
2 lifts to a properly embedded G2 in F2. If

we cross this G′
2 with G′

1 and take the branched cyclic cover branched along the l
parallel copies of G′

1 corresponding to the l branch points in G′
2, we obtain G1×G2.

Thus, in the branched cyclic cover (3.2) G′
1 × G′

2 lifts to G1 × G2. Now, returning
to F ′

2 and removing a tubular neighborhood of the properly embedded G′
2 leaves

(F ′
2)◦, and in the cover we have F ◦

2 . Thus, in the branched cyclic cover (3.2) (F ′
2)◦

lifts to F ◦
2 . So, F decomposes as

F = F ◦
1 ∪ G1 × G2 ∪ F ◦

2

as conjectured. �

Remark 3.5. In [1] (see also Remark 8.3 in [18]) Collin and Saveliev remark that
their approach to proving the CIC for hypersurfaces f(x, y) + zn = 0 can be gener-
alized to prove the CIC in the same cases for which Theorem 3.4 proves the MFC.
Since the MFC implies the CIC, Theorem 3.4 provides an independent proof of
Collin and Saveliev’s claim.
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3.2. Equivalent splice diagrams and the Milnor Fiber Conjecture. Recall
from section 2.2 that a non-minimal splice diagram is one that fails to satisfy the
condition that all edge weights ending in a leaf are strictly greater than 1. This
condition is not necessary in the topological description of homology sphere links
specified by splice diagrams, and is only needed to ensure a one-to-one correspon-
dence between diagrams and homology sphere links in Theorem 2.4.

It is often convenient to allow for non-minimal splice diagrams because many
more graph knots in homology sphere links can be represented via these splice
diagrams. For example, using non-minimal splice diagrams for S3, we can represent
all algebraic knots in S3 (in the sense of links of plane curve singularities as in [2]).
In our case the use of non-minimal splice diagrams widens the class of examples to
which Theorem 3.4 applies. First, however, we must show that if the MFC holds
for a given diagram, then the MFC also holds for any equivalent diagram, assuming
that both diagrams satisfy the semigroup condition.

Recall that any non-minimal splice diagram can be reduced to the unique equiv-
alent minimal splice diagram by repeatedly applying the following operations [2]:

∆1 ◦p1 p2 ∆2
�������� ∆1 ∆2

◦

1

and, for r > 2,

∆1

◦
p1
��

��
��

��

◦1

∆1

◦
p1
��

��
��

��

∆2
p2

pr

��
��

��
��

�������� ∆2
p2

pr

��
��

��
��

∆r ∆r

We show that the MFC construction holds for the diagrams on the left if and
only if it holds for the diagrams on the right, assuming that both diagrams satisfy
the semigroup condition. Thus, if ∆ is a splice diagram satisfying the semigroup
condition for a splice type singularity link Σ such that the MFC construction holds
for ∆, then the MFC holds for any splice diagram for Σ that satisfies the semigroup
condition.

Lemma 3.6. Let
∆ = ∆1 ∆2

and
∆+ = ∆1 ◦p1 p2 ∆2

◦

1
,

with r > 2, and suppose that both ∆ and ∆+ satisfy the semigroup condition. Then
the MFC holds for ∆ if and only if the MFC holds for ∆+.

Proof. Since ∆ and ∆+ are equivalent splice diagrams, both of which satisfy the
semigroup condition, they correspond to the same splice type singularities with the
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same Milnor fiber, F . We first consider the case in which we decompose ∆ along
an edge e, other than the edge between ∆1 and ∆2, into two subdiagrams, ∆a and
∆b, ∆ = ∆a

e ∆b . Let F ◦
a , F ◦

b , Ga and Gb, be the pieces in the corresponding
MFC construction, where Fa is the fiber corresponding to ∆a, and so on. So,
conjecturally,

(3.3) F = F ◦
a ∪ Ga × Gb ∪ F ◦

b .

Without loss of generality we may assume that e is an edge of ∆1, and that ∆2 is a
subdiagram of ∆b. Decompose ∆+ along e into subdiagrams ∆+

a and ∆+
b , and let

(F+
a )◦, (F+

b )◦, G+
a and G+

b , be the pieces in the corresponding MFC construction,
where F+

a is the fiber corresponding to ∆+
a , and so on. So, the MFC for this

decomposition conjectures that

(3.4) F = (F+
a )◦ ∪ G+

a × G+
b ∪ (F+

b )◦.

We need to show that (3.3) holds if and only if (3.4) holds. We have ∆a = ∆+
a , so

Fa = F+
a , Ga = G+

a and thus F ◦
a = (F+

a )◦. Furthermore, ∆b and ∆+
b are equivalent

diagrams, and the knots along which the splice decomposition occurs are the same,
so Fb = F+

b , Ga = G+
b and thus F ◦

b = (F+
b )◦. So,

F ◦
a ∪ Ga × Gb ∪ F ◦

b = (F+
a )◦ ∪ G+

a × G+
b ∪ (F+

b )◦.

Thus, the MFC construction (3.3) corresponding to decomposing ∆ along e yields
F if and only if the MFC construction (3.4) corresponding to decomposing ∆+

along e yields F .
Now, the node in ∆+ not contained in either ∆1 or ∆2 we will call v:

v

��∆1 ◦p1 p2 ∆2

◦

1

We now consider the case in which we decompose ∆+ along an edge e which is not
an edge of ∆1 or ∆2. Then there are three sub-cases:

(1) e is the edge from v to a leaf:

v

��∆1 ◦p1 p2 ∆2

◦

1
e
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(2) e is the edge from ∆1 to v:

v

��∆1 ◦p1

e

p2 ∆2

◦

1

(3) e is the edge from ∆2 to v:

v

��∆1 ◦p1 p2

e ∆2

◦

1

The MFC corresponding to the decomposition of case (1) is always true. The MFC
corresponding to the decomposition in case (2) is true if and only if the MFC
corresponding to the decomposition in case (3) is true. Consider case (2). We will
show that the MFC corresponding to this decomposition of ∆+ holds if and only if
the MFC holds when we decompose ∆ along the edge from ∆1 to ∆2.

Let ∆+
a be the subdiagram in this decomposition containing ∆1 and let ∆+

b be
the subdiagram in this decomposition containing ∆2. Let (F+

a )◦, (F+
b )◦, G+

a and
G+

b be the pieces in the corresponding MFC construction. Decompose ∆ along the
edge between ∆1 and ∆2. Let ∆a be the piece of this decomposition consisting of
∆1 and let ∆b be the piece of this decomposition consisting of ∆2. Let F ◦

a , F ◦
b , Ga

and Gb be the pieces in the corresponding MFC construction as before. Then
∆a = ∆+

a . So, Fa = F+
a and Ga = G+

a , and thus F ◦
a = (F+

a )◦. On the other side,
∆b is equivalent to ∆+

b , so Fb = F+
b . G+

b is the fiber of the knot indicated by

◦��
p1 p2 ∆2

◦

1

while Gb is the fiber of the knot indicated by
�� ∆2 .

From the splice diagram we can see that G+
b can be built by gluing a once punctured

fiber of the knot indicated by

◦��
p1 p2 ◦

◦

1

to the fiber Gb along the boundary. The knot indicated by

◦��
p1 p2 ◦

◦

1
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is an unknotted circle in S3 and so has fiber D2. Thus G+
b is the result of pasting

an annulus along one boundary component to the boundary of Gb, giving back Gb.
So,

F ◦
a ∪ Ga × Gb ∪ F ◦

b = (F+
a )◦ ∪ G+

a × G+
b ∪ (F+

b )◦.

Thus, the MFC construction corresponding to decomposing ∆ along the edge be-
tween ∆1 and ∆2 yields F if and only if the MFC construction corresponding to
decomposing ∆+ along e yields F . �

Lemma 3.7. Let

∆ =

∆1

◦
p1
��

��
��

��

∆2
p2

pr

��
��

��
��

∆r

and

∆+ =

∆1

◦
p1
��

��
��

��

◦1∆2
p2

pr

��
��

��
��

∆r

and suppose that both ∆ and ∆+ satisfy the semigroup condition. Then the MFC
holds for ∆ if and only if the MFC holds for ∆+.

Proof. Since both ∆ and ∆+ are equivalent splice diagrams satisfying the semigroup
condition, they correspond to the same splice type singularities with the same
Milnor fiber, F . When we decompose ∆ along an edge, decomposing ∆+ along the
corresponding edge leads to equivalent splice components and all pieces in the MFC
construction are the same. Thus, the MFC holds for decompositions of ∆ along an
edge if and only if the MFC construction holds for the decomposition of ∆+ along
the same edge. If we decompose ∆+ along the edge not contained in ∆,

∆1

◦
p1
��

��
��

��

1 ��∆2
p2

pr

��
��

��
��

◦��

∆r
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Then the MFC construction amounts to removing a tubular neighborhood of the
knot

∆1

◦
p1
��

��
��

��

1 ��∆2
p2

pr

��
��

��
��

∆r

from F , gluing it back in and then pasting a collar neighborhood on to the boundary,
giving back F . �

Since any splice diagram can be reduced to the unique equivalent minimal splice
diagram via these operations, we have proven:

Theorem 3.8. If the Milnor Fiber Conjecture holds for a given diagram, then the
Milnor Fiber Conjecture also holds for any equivalent diagram.

3.3. An example. In light of Theorem 3.8 it is not hard to write examples to
which Theorem 3.4 applies.

To take a concrete example, start with the splice type singularity specified by
the diagram

∆ = ◦

◦
2��

��
��

�

◦107 2
3

◦�������

◦
7
������� ◦

5

�������

Label the leaves w1, . . . , w4 starting at the upper left leaf and moving counter-
clockwise, and associate a variable zi to wi. Call the left node v1 and the right
node v2.

w1

◦

◦
2













◦107 2
3

◦�������

v2

��

w4

w2
◦

7
�������

v1

��

w3
◦

5










Then
i l′v1wi

l′v2wi

1 1 7
2 1 2
3 3 1
4 5 1

The semigroup condition at the left node is

2 = αv1w1 · 1,

7 = αv1w2 · 1,

107 = αv1w3 · 3 + αv1w4 · 5,



THE MILNOR FIBER CONJECTURE 4677

and at the right node is

2 = αv2w1 · 7 + αv2w2 · 2,

5 = αv2w3 · 1,

3 = αv2w4 · 1.

The condition is satisfied by any choice of coefficients

i αv1wi
αv2wi

1 2 0
2 7 1
3 4 + j · 5 5
4 19 − j · 3 3

where j ∈ {0, . . . , 6}. So, for example using the coefficients with j = 1, the splice
type equations can be chosen to be

z2
1 + z7

2 + z9
3z16

4 = 0,(3.5)

−z2 + z5
3 + z3

4 = 0.

Solving for z2 in the second equation and substituting into the first, we obtain

z2
1 + (z5

3 + z3
4)7 + z9

3z16
4 = 0.

Changing variables to x = z3, y = z4 and z = z1 gives

(x5 + y3)7 + x9y16 + z2 = 0.

Letting f1(x, y) = (x5 + y3)7 + x9y16, this is

f1(x, y) + z2 = 0.

Thus, the MFC is known to hold for this splice type singularity by [18]. Now, take
an equivalent non-minimal version of this diagram that still satisfies the semigroup
condition, such as,

∆+ =

w1

◦

◦

2��
��

��
��

◦107 2
3

◦��������

v2

��

w4 v3

��

5

◦

w6

w2
◦

7
�������

v1

��

w3
◦

5

�������

◦1 151 1 ◦

w5

Label the leaves and nodes as shown, and associate a variable zi to the leaf wi.
Then

i l′v1wi
l′v2wi

l′v3wi

1 1 7 105
2 1 2 30
3 3 1 6
4 5 1 10
5 15 1 1
6 17 5 1
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One choice of coefficients that satisfies the semigroup condition is
i αv1wi

αv2wi
αv3wi

1 2 0 1
2 7 2 1
3 9 5 1
4 16 3 1
5 0 1 5
6 0 0 1

For this choice of coefficients, the corresponding admissible monomials are z2
1 ,

z7
2 and z9

3z16
4 at v1; z2, z5

3 , z3
4 and z5 at v2; and z1z2z3z4, z5

5 and z6 at v3. Thus,
splice type equations can be chosen to be

z2
1 + z7

2 + z9
3z16

4 = 0,(3.6)

−z2 + z5
3 + z3

4 = 0,

z5
3 + 2z3

4 − z5 = 0,

z1z2z3z4 + z5
5 − z6 = 0.

Substituting for z2 and changing variables to x = z3, y = z4, z = z1, Z5 =
z5 − (z5

3 + 2z3
4) and Z6 = z6 − (z1z2z3z4 + z5

5), we have

(x5 + y3)7 + x9y16 + z2 = 0,

Z5 = 0,

Z6 = 0,

the same splice type singularity as before. By applying Theorem 3.8, the MFC is
also valid for splice decompositions of this diagram.

Now, consider the graph knot indicated by the right-most leaf:

◦

◦
2��

��
��

�

◦107 2
3

◦�������
5

◦◦
7
������� ◦

5

�������

◦1 151 1 ∗��

By Theorem 2.5, this knot is cut out by setting

z6 = z1z2z3z4 + z5
5 = 0

in the original variables of equation (3.5). Substituting for z2 and z5 from (3.6),
this becomes

z1z3z4(z5
3 + z3

4) + (z5
3 + 2z3

4)5 = 0.

So, in the variables x, y, z, the knot is cut out by

f2(x, y, z) := xyz(x5 + y3) + (x5 + 2y3)5 = 0.

Since 11 is coprime to all edge weights near with respect to ∗, the diagram

∆+(∗, 11) = ◦

◦
2��

��
��

�

◦1177 2
3

◦�������
5

◦◦
7
������� ◦

5

�������

◦11 151 ◦11
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is again a splice diagram for a homology sphere link by Theorem 3.1. By Lemma
3.3, the splice type equations for this singularity can be obtained by replacing z6

with z11
6 in the equations (3.6), yielding,

z2
1 + z7

2 + z9
3z16

4 = 0,

−z2 + z5
3 + z3

4 = 0,

z5
3 + 2z3

4 − z5 = 0,

z1z2z3z4 + z5
5 − z11

6 = 0.

Substituting for z2 and z5 and changing variables to x = z3, y = z4, z = z1, w = z6

and Z5 = z5 − (z5
3 + 2z3

4), splice type equations for ∆+(∗, 11) are

(x5 + y3)7 + x9y16 + z2 = 0,

(x5 + 2y3)5 + xy(x5 + y3)z + w11 = 0.

With f1(x, y) and f2(x, y, z) as before, this is

f1(x, y) + z2 = 0,

f2(x, y, z) + w11 = 0.

By Theorem 3.4, the MFC is valid for this singularity.

3.4. Iterated branched cyclic covers and the Splice Type Conjecture. One
may notice that in the example of section 3.3, the equations for ∆+(∗, k) were the
same as those for ∆, with an additional equation added of the form f2(x, y, z)+wk =
0, where f2(x, y, z) = 0 is the equation that cut out the graph knot along which the
branching occurs. This is true in general. The splice type equations for a singularity
obtained by the construction in section 3.1 are of the form {fi(z1, . . . , zi+1)+zki

i+2 =
0}n

i=1, and one is tempted to try and use Theorem 3.4 to prove the MFC for
all isolated complete intersection singularities with homology sphere link given by
equations of this form. The problem is that, without a proof of the Splice Type
Conjecture, we cannot say that such a complete intersection is necessarily of splice
type.

Implicit in Neumann and Wahl’s statement that the MFC holds for hypersurface
singularities of the form f(x, y)+zk = 0 is the assertion that such a singularity is of
splice type, since the MFC only applies in the case of splice type singularities. The
proof that a hypersurface of the form f(x, y) + zk = 0 with homology sphere link
is of splice type is a straightforward consequence of the positive edge determinant
condition and Lemma 2.6 (see proposition 8.1 of [18]). This argument does not
generalize to equations of the form {fi(z1, . . . , zi+1) + zki

i+2 = 0}n
i=1. In fact, a

minimal splice diagram for the link of a splice type singularity given by equations
of the form {fi(z1, . . . , zi+1) + zki

i+2 = 0}n
i=1 may be equivalent to a non-minimal

diagram that does not satisfy the semigroup condition.
For example, the link Σ of the hypersurface singularity from the example in

section 3.3 given by

(x5 + y3)7 + x9y16 + z2 = 0
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is specified by the diagram

∆ = ◦

◦
2��

��
��

�

◦107 2
3

◦�������

◦
7
������� ◦

5

�������

and this diagram satisfies the semigroup condition. Now consider the equivalent
non-minimal diagram

∆+ = ◦

◦
2��

��
��

�

◦107 2
3

◦�������
2

◦◦
7
������� ◦

5

�������

◦1 61 ◦1

This splice diagram does not satisfy the semigroup condition, even though it cor-
responds to the link of a splice type singularity. If the STC is true, then the
knot indicated by the right-most vertex cannot be cut out by a single equation.
If the knot indicated by the right-most vertex were cut out by a single equation,
f(x, y, z) = 0, then for any k pairwise coprime to 2, 3, 5, 7 and 61, the diagram,

◦

◦
2��

��
��

�

◦107k 2
3

◦�������
2

◦◦
7
������� ◦

5

�������

◦k 61 ◦k

would correspond to a complete intersection given by the equations

(x5 + y3)7 + x9y16 + z2 = 0,

f(x, y, z) + wk = 0,

but not of splice type, and would thus be a counterexample to the STC.
The question then becomes, when is the knot indicated by a distinguished leaf

of a splice diagram a graph knot? This seems to be a particularly tricky question.
Through the use of Lemma 2.6 one can get bounds on certain coefficients in the
splice diagrams that force the semigroup condition to hold, but as the example above
illustrates, there is no a priori reason for these bounds to be satisfied. Pursuit of an
answer to this question, either providing a counterexample to the STC or a proof
of the STC for the singularities considered in this paper is an interesting direction
for further research.
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