Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A construction of numerical Campedelli surfaces with torsion $ \mathbb{Z}/6$


Authors: Jorge Neves and Stavros Argyrios Papadakis
Journal: Trans. Amer. Math. Soc. 361 (2009), 4999-5021
MSC (2000): Primary 14J29; Secondary 13H10, 14M05
DOI: https://doi.org/10.1090/S0002-9947-09-04716-3
Published electronically: April 15, 2009
MathSciNet review: 2506434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We produce a family of numerical Campedelli surfaces with $ \mathbb{Z}/6$ torsion by constructing the canonical ring of the étale 6 to 1 cover using serial unprojection. In Section 2 we develop the necessary algebraic machinery. Section 3 contains the numerical Campedelli surface construction, while Section 4 contains remarks and open questions.


References [Enhancements On Off] (What's this?)

  • [BH] Bruns, W. and Herzog, J., Cohen-Macaulay rings. Revised edition, Cambridge Studies in Advanced Mathematics 39, CUP 1998 MR 1251956 (95h:13020)
  • [BPHV] Barth, W., Hulek, K., Peters, C., Van de Ven, A., Compact complex surfaces. Second enlarged edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 4, Springer, 2004 MR 2030225 (2004m:14070)
  • [Br] Brown, G., Graded ring database homepage, online searchable database, available from http://pcmat12.kent.ac.uk/grdb/index.php
  • [BV] Bruns, W. and Vetter, U., Determinantal rings. Lecture Notes in Math. 1327, Springer 1988 MR 953963 (89i:13001)
  • [CR] Corti, A. and Reid, M., Weighted Grassmannians, in Algebraic geometry, A volume in memory of Paolo Francia, M. Beltrametti et al. (eds.), de Gruyter 2002, 141-163 MR 1954062 (2003m:14076)
  • [Do] Dolgachev, I, Weighted projective varieties in Group actions and vector fields, 34-71, Lecture Notes in Math., 956, Springer 1982 MR 704986 (85g:14060)
  • [Ei] Eisenbud, D., Commutative algebra, with a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, 1995 MR 1322960 (97a:13001)
  • [FOV] Flenner, H., O'Carrol, L. and Vogel, W., Joins and intersections. Springer Monographs in Mathematics. Springer-Verlag, 1999 MR 1724388 (2001b:14010)
  • [Fr] Frantzen, Kr., On K$ 3$-surfaces in weighted projective space. Univ. of Warwick M.Sc. thesis, Sep 2004 v+55 pp., available from http://pcmat12.kent.ac.uk/grdb/Doc/papers.php
  • [GPS01] Greuel, G.-M, Pfister, G., and Schönemann, H., Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001), available from http://www.singular.uni-kl.de
  • [Ha] Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, 1977 MR 0463157 (57:3116)
  • [IF] Iano-Fletcher, A., Working with weighted complete intersections, in Explicit birational geometry of 3-folds, 101-173, London Math. Soc. Lecture Note Ser., 281, CUP 2000 MR 1798982 (2001k:14089)
  • [KM] Kustin, A. and Miller, M., Constructing big Gorenstein ideals from small ones, J. Algebra 85 (1983), 303-322 MR 725084 (85f:13014)
  • [LP] Lee, Y. and Park, J., A simply connected surface of general type with $ p_g=0$ and $ K^2=2$, Invent. Math. 170 (2007), no. 3, 483-505 MR 2357500
  • [L] Liu, Q., Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6. Oxford University Press, 2002 MR 1917232 (2003g:14001)
  • [MP] Mendes Lopes, M. and Pardini, R., Numerical Campedelli surfaces with fundamental group of order $ 9$, J. Eur. Math. Soc. 10 (2008), no. 2, 457-476 MR 2390332
  • [Na] Naie, D., Numerical Campedelli surfaces cannot have the symmetric group as the algebraic fundamental group, J. London Math. Soc. 59 (1999), 813-827 MR 1709082 (2000f:14055)
  • [P1] Papadakis, S., Gorenstein rings and Kustin-Miller unprojection, Univ. of Warwick Ph.D. thesis, Aug 2001, vi + 72 pp., available from http://www.math.ist. utl.pt/$ \sim$papadak/
  • [P2] Papadakis, S., Kustin-Miller unprojection with complexes, J. Algebraic Geometry 13 (2004), 249-268 MR 2047698 (2005d:13025)
  • [P3] Papadakis, S., Type II unprojection, J. Algebraic Geometry 15 (2006), 399-414 MR 2219843 (2007c:14051)
  • [PR] Papadakis, S. and Reid, M., Kustin-Miller unprojection without complexes, J. Algebraic Geometry 13 (2004), 563-577 MR 2047681 (2005j:14068)
  • [R1] Reid, M., Graded Rings and Birational Geometry, in Proc. of algebraic symposium (Kinosaki, Oct 2000), K. Ohno (Ed.) 1-72, available from www.maths.warwick. ac.uk/$ \sim$miles/3folds
  • [R2] Reid, M., Campedelli versus Godeaux, in Problems in the theory of surfaces and their classification (Cortona, 1988), 309-365, Sympos. Math., XXXII, Academic Press, London, 1991 MR 1273384 (95h:14031)
  • [R3] Reid, M., Examples of type IV unprojection, preprint, math.AG/0108037, 16 pp.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J29, 13H10, 14M05

Retrieve articles in all journals with MSC (2000): 14J29, 13H10, 14M05


Additional Information

Jorge Neves
Affiliation: Centre for Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
Email: neves@mat.uc.pt

Stavros Argyrios Papadakis
Affiliation: Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
Email: papadak@math.ist.utl.pt

DOI: https://doi.org/10.1090/S0002-9947-09-04716-3
Received by editor(s): April 13, 2007
Received by editor(s) in revised form: December 3, 2007
Published electronically: April 15, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society