Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A Carlitz module analogue of a conjecture of Erdős and Pomerance


Authors: Wentang Kuo and Yu-Ru Liu
Journal: Trans. Amer. Math. Soc. 361 (2009), 4519-4539
MSC (2000): Primary 11K36; Secondary 11R58, 14H05
DOI: https://doi.org/10.1090/S0002-9947-09-04723-0
Published electronically: April 6, 2009
MathSciNet review: 2506417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A=\mathbb{F}_q[T]$ be the ring of polynomials over the finite field $ \mathbb{F}_q$ and $ 0 \neq a \in A$. Let $ C$ be the $ A$-Carlitz module. For a monic polynomial $ m\in A$, let $ C(A/mA)$ and $ \bar{a}$ be the reductions of $ C$ and $ a$ modulo $ mA$ respectively. Let $ f_a(m)$ be the monic generator of the ideal $ \{f\in A, C_f(\bar{a}) =\bar{0}\}$ on $ C(A/mA)$. We denote by $ \omega(f_a(m))$ the number of distinct monic irreducible factors of $ f_a(m)$. If $ q\neq 2$ or $ q=2$ and $ a\neq 1, T$, or $ (1+T)$, we prove that there exists a normal distribution for the quantity

$\displaystyle \frac{\omega(f_a(m))-\frac{1}{2}(\log \deg m)^2}{\frac{1}{\sqrt{3}}{(\log \deg m)^{3/2}}}.$

This result is analogous to an open conjecture of Erdős and Pomerance concerning the distribution of the number of distinct prime divisors of the multiplicative order of $ b$ modulo $ n$, where $ b$ is an integer with $ \vert b\vert>1$, and $ n$ a positive integer.


References [Enhancements On Off] (What's this?)

  • 1. P. D. T. A. Elliott, Probabilistic number theory, Vols. I. & II., Springer-Verlag (1979). MR 551361 (82h:10002a); MR 560507 (82h:10002b)
  • 2. P. Erdős & M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738-742. MR 0002374 (2:42c)
  • 3. P. Erdős & C. Pomerance, On the normal number of prime factors of $ \varphi(n)$, Rocky Mountain J. Math. 15 (1985), 343-352. MR 823246 (87e:11112)
  • 4. D. Goss, Basic structures of function field arithmetic, Springer-Verlag (1996). MR 1423131 (97i:11062)
  • 5. G. H. Hardy & S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. 48 (1917), 76-92. MR 2280878
  • 6. D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. MR 0330106 (48:8444)
  • 7. C.-N. Hsu, On Artin's conjecture for the Carlitz module, Compositio Math. 106 (1997), 247-266. MR 1457105 (98c:11053)
  • 8. C.-N. Hsu, A large sieve inequality for rational function fields, J. Number Theory 58 (1996), 267-287. MR 1393616 (97e:11147)
  • 9. M. Ishibashi, Effective version of the Tschebotareff density theorem in function fields over finite fields, Bull. London Math. Soc. 24 (1992), 52-56. MR 1139057 (92k:11135)
  • 10. J. Kubilius, Probabilistic methods in the theory of numbers, Transl. Math. Monogr. 11, Amer. Math. Soc., Providence, RI, 1964. MR 160745 (28:3956)
  • 11. S. Li & C. Pomerance, On generalizing Artin's conjecture on primitive roots to composite moduli, J. Reine Angew. Math. 556 (2003), 205-224. MR 1971146 (2004c:11177)
  • 12. Y.-R. Liu, The Erdős theorem and the Halberstam theorem in function fields, Acta. Arith. 114 (2004), 323-330. MR 2101821 (2005h:11218)
  • 13. Y.-R. Liu, A prime analogue of the Erdős-Pomerance conjecture for elliptic curves, Comment. Math. Helv. 80 (2005), 755-769. MR 2182699 (2006f:11119)
  • 14. M. R. Murty & V. K. Murty, An analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure App. Math., 15 (1984), 1090-1101. MR 765015 (86d:11039)
  • 15. M. R. Murty & F. Saidak, Non-abelian generalizations of the Erdős-Kac theorem, Canadian J. Math. 56 (2004), 356-372. MR 2040920 (2005a:11114)
  • 16. M. R. Murty & S. Srinivasan, Some remarks on Artin's conjecture, Canad. Math. Bull. Vol. 30 (1987), 80-85. MR 879875 (88e:11094)
  • 17. M. Rosen, Number theory in function fields, Graduate Texts in Math. 210, Springer (2002). MR 1876657 (2003d:11171)
  • 18. H. Shapiro, Distribution functions of additive arithmetic functions, Proc. Nat. Acad. Sci. USA 42 (1956), 426-430. MR 0079609 (18:113c)
  • 19. P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274-276.
  • 20. W.-B. Zhang, Probabilistic number theory in additive arithmetic semigroups, In: Analytic Number Theory (B. C. Berndt et al. eds.) Prog. Math., Birkhäuser (1996), 839-884. MR 1409397 (97h:11088)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11K36, 11R58, 14H05

Retrieve articles in all journals with MSC (2000): 11K36, 11R58, 14H05


Additional Information

Wentang Kuo
Affiliation: Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: wtkuo@math.uwaterloo.ca

Yu-Ru Liu
Affiliation: Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: yrliu@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9947-09-04723-0
Keywords: The Carlitz module, Erd\H {o}s-Pomerance's conjecture
Received by editor(s): March 3, 2006
Received by editor(s) in revised form: July 30, 2006
Published electronically: April 6, 2009
Additional Notes: The research of the first author was supported by an NSERC discovery grant.
The research of the second author was supported by an NSERC discovery grant.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society