Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic stability of the wave equation on compact surfaces and locally distributed damping-A sharp result


Authors: M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano
Journal: Trans. Amer. Math. Soc. 361 (2009), 4561-4580
MSC (2000): Primary 32J15, 35L05, 47J35, 93D15
DOI: https://doi.org/10.1090/S0002-9947-09-04763-1
Published electronically: April 13, 2009
MathSciNet review: 2506419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the study of the wave equation on compact surfaces and locally distributed damping, described by

$\displaystyle \left. \begin{array}{l} u_{tt} - \Delta_{\mathcal{M}}u+ a(x) g(u_... ...pace }\mathcal{M}\times \left] 0,\infty \right[ ,\smallskip \end{array} \right.$    

where $ \mathcal{M}\subset \mathbb{R}^3$ is a smooth oriented embedded compact surface without boundary. Denoting by $ \mathbf{g}$ the Riemannian metric induced on $ \mathcal{M}$ by $ \mathbb{R}^3$, we prove that for each $ \epsilon > 0$, there exist an open subset $ V \subset\mathcal M$ and a smooth function $ f:\mathcal M \rightarrow \mathbb{R}$ such that $ meas(V)\geq meas(\mathcal M)-\epsilon$, $ Hess f \approx \mathbf{g}$ on $ V$ and $ \underset{x\in V}\inf \vert\nabla f(x)\vert>0$.

In addition, we prove that if $ a(x) \geq a_0> 0$ on an open subset $ \mathcal{M}{\ast} \subset \mathcal M$ which contains $ \mathcal{M}\backslash V$ and if $ g$ is a monotonic increasing function such that $ k \vert s\vert \leq \vert g(s)\vert \leq K \vert s\vert$ for all $ \vert s\vert \geq 1$, then uniform and optimal decay rates of the energy hold.


References [Enhancements On Off] (What's this?)

  • [ALA] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim. 51(1), (2005), 61-105. MR 2101382 (2005h:34149)
  • [An1] D. Andrade, M. M. Cavalcanti, V. N. Domingos Cavalcanti, and H. P. Oquendo. Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds. J. Comput. Anal. Appl., vol. 8, no. 3, pp. 173-193, 2006. MR 2225653 (2006k:35032)
  • [An2] D. Andrade, M. M. Cavalcanti, V. N. Domingos Cavalcanti, and H. P. Oquendo. Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds (part II). J. Comput. Anal. Appl, vol. 8, no. 3, pp. 287-301, 2006. MR 2223868 (2006m:35036)
  • [BAR] C. Bardos, G. Lebeau and J. Rauch, Contrôle et stabilisation de l'équation des ondes, Appendix II in J. L. Lions Contrôlabilité exacte des systèmes distribués, Collection RMA, Vol. 8, Masson, Paris, 1988. MR 953547 (90a:49040)
  • [CA-DO] M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl. 291(1), (2004), 109-127. MR 2034061 (2005h:35238)
  • [Ca-Do-Fu-So] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and J. A. Soriano, Uniform stabilization of the wave equation on compact surfaces and locally distributed damping. To appear in Methods Appl. Anal.
  • [CAVAL] M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42 (2003), no. 4, 1310-1324. MR 2044797 (2005d:35257)
  • [CA-DO-LA] M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction, Journal of Differential Equations, 236 (2007), 407-459. MR 2322019 (2008c:35189)
  • [CHR] H. Christianson, Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal. 246 (2007), no. 2, 145-195. MR 2321040
  • [Do Carmo] M. P. do Carmo, Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1138207 (92i:53001)
  • [HIT] M. Hitrik, Expansions and eigenfrequencies for damped wave equations, Journées ``Équations aux Dérivées Partielles'' (Plestin-les-Grèves, 2001), Exp. No. VI, 10 pp., Univ. Nantes, Nantes, 2001. MR 1843407 (2002h:58050)
  • [LA-TA] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential and Integral Equations, 6 (1993), 507-533. MR 1202555 (94c:35129)
  • [LA-TRI] I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Derichlet or Neumann feedback control without geometric conditions, Appl. Math. Optim., 25 (1992), 189-124 MR 1142681 (93b:93099)
  • [LIONS1] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, tome 1, Masson, 1988. MR 0953547 (90a:49040)
  • [LIONS2] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, tome 2, Masson, 1988. MR 0963060 (89k:93017)
  • [LiMa] J.L.Lions-E.Magenes, Problèmes Aux Limites Non Homogènes et Applications, Dunod, Paris, 1968, Vol. 1.
  • [Ra-Ta] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Comm. Pure Appl. Math. 28(4) (1975), 501-523 . MR 0397184 (53:1044a)
  • [Ta1] D. Tataru, Unique continuation for solutions to PDE's: Between Holmgren's theorem and Hörmander's theorem. Comm. Partial Differential Equations 20 (1995), no. 5-6, 855-884. MR 1326909 (96e:35019)
  • [Ta2] D. Tataru. Unique continuation for operators with partially analytic coefficients. J. Math. Pures Appl. (9) 78 (1999), no. 5, 505-521. MR 1697040 (2000e:35005)
  • [Tou] D. Toundykov, Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions, Nonlinear Analysis T. M. A. 67 (2007), 514-544. MR 2317185 (2008f:35257)
  • [TRI-YAO] R. Triggiani and P. F. Yao, Carleman estimates with no lower-order terms for general Riemannian wave equations. Global uniqueness and observability in one shot, Appl. Math. and Optim. 46 (Sept./Dec. 2002), 331-375. Special issue dedicated to J. L. Lions. MR 1944764 (2003j:93042)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32J15, 35L05, 47J35, 93D15

Retrieve articles in all journals with MSC (2000): 32J15, 35L05, 47J35, 93D15


Additional Information

M. M. Cavalcanti
Affiliation: Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

V. N. Domingos Cavalcanti
Affiliation: Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

R. Fukuoka
Affiliation: Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

J. A. Soriano
Affiliation: Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

DOI: https://doi.org/10.1090/S0002-9947-09-04763-1
Keywords: Compact surfaces, wave equation, locally distributed damping.
Received by editor(s): April 26, 2007
Published electronically: April 13, 2009
Additional Notes: The research of the first author was partially supported by the CNPq Grant 300631/2003-0
The research of the second author was partially supported by the CNPq Grant 304895/2003-2
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society