Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Distributional chaos revisited


Author: Piotr Oprocha
Journal: Trans. Amer. Math. Soc. 361 (2009), 4901-4925
MSC (2000): Primary 37B99; Secondary 37D45, 37B10, 37B20
DOI: https://doi.org/10.1090/S0002-9947-09-04810-7
Published electronically: April 13, 2009
MathSciNet review: 2506431
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In their famous paper, Schweizer and Smítal introduced the definition of a distributionally chaotic pair and proved that the existence of such a pair implies positive topological entropy for continuous mappings of a compact interval. Further, their approach was extended to the general compact metric space case.

In this article we provide an example which shows that the definition of distributional chaos (and as a result Li-Yorke chaos) may be fulfilled by a dynamical system with (intuitively) regular dynamics embedded in $ \mathbb{R}^3$. Next, we state strengthened versions of distributional chaos which, as we show, are present in systems commonly considered to have complex dynamics.

We also prove that any interval map with positive topological entropy contains two invariant subsets $ X,Y \subset I$ such that $ f\vert _X$ has positive topological entropy and $ f\vert _Y$ displays distributional chaos of type $ 1$, but not conversely.


References [Enhancements On Off] (What's this?)

  • 1. E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003) 1421-1433. MR 1986303 (2004c:37016)
  • 2. L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one. Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., River Edge, NJ, 1993. MR 1255515 (95j:58042)
  • 3. J. Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies, 153. North-Holland Publishing Co., Amsterdam, 1988 MR 956049 (89m:54050)
  • 4. J. Auslander and J. Yorke, Interval maps, factors of maps and chaos, Tohoku Math. J., 32 (1980) 177-188. MR 580273 (82b:58049)
  • 5. M. Babilonová-Stefánková, Extreme chaos and transitivity, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003) 1695-1700. MR 2015619 (2004i:37075)
  • 6. F. Balibrea, L. Reich and J. Smítal, Iteration theory: Dynamical systems and functional equations, Dynamical systems and functional equations (Murcia, 2000), Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1627-1647. MR 2015613 (2004m:37014)
  • 7. F. Balibrea, B. Schweizer, A. Sklar, and J. Smítal, Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos 13 (2003), 1683-1694. MR 2015618 (2004m:37015)
  • 8. F. Balibrea, J. Smítal, and M. Štefánková, The three versions of distributional chaos, Chaos Solitons Fractals 23 (2005), 1581-1583. MR 2101573 (2005f:37040)
  • 9. J. Banks, Topological mapping properties defined by digraphs, Discrete Contin. Dynam. Systems, 5 (1999) 83-92. MR 1664461 (99j:54038)
  • 10. F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math. 547 (2002) 51-68. MR 1900136 (2003g:37014)
  • 11. F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets, Colloq. Math., 110 (2008) 293-361. MR 2353910 (2008j:37013)
  • 12. L. Block, Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580. MR 509258 (81m:58063)
  • 13. R. Bowen, Topological entropy and axiom A, in ``Global Analysis'', Proceedings of Symposia on Pure Mathematics, vol. 14, Amer. Math. Soc., Providence, 1970, pp. 23-41. MR 0262459 (41:7066)
  • 14. A. M. Bruckner and T. Hu, On scrambled sets for chaotic functions, Trans. Amer. Math. Soc., 301 (1987) 289-297. MR 879574 (88f:26003)
  • 15. Z. Chen, G. Liao and L. Wang, The complexity of a minimal sub-shift on symbolic spaces, J. Math. Anal. Appl., 317 (2006), 136-145. MR 2205317 (2007j:37021)
  • 16. Z. Chu, X. Duan, G. Liao and L. Wang, The set of recurrent points of a continuous self-map on an interval and strong chaos, J. Appl. Math. & Computing 14 (2004), 277 - 288. MR 2025438 (2004j:37069)
  • 17. J. P. Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc., 108 (1963) 88-96. MR 0154269 (27:4218)
  • 18. W. A. Coppel, Maps of an interval, IMA Preprint Series, vol. 26.
  • 19. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Springer-Verlag, Berlin, 1976. MR 0457675 (56:15879)
  • 20. R. Devaney, A first course in chaotic dynamical systems, Perseus Books, 1992. MR 1202237 (94a:58124)
  • 21. B.-S. Du, On the invariance of Li-Yorke chaos of interval maps, J. Difference Equ. Appl., 11 (2005) 823-828. MR 2159799 (2006d:37063)
  • 22. V.V. Fedorenko, A.N. Sharkovskij and J. Smítal, Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc., 110 (1990) 141-148. MR 1017846 (91a:58148)
  • 23. T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull. Austral. Math. Soc, 36 (1987), 411-416. MR 923822 (89d:58083)
  • 24. E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993) 1067-1075. MR 1251259 (94j:58109)
  • 25. S. Glasner, Compressibility properties in topological dynamics, Amer. J. Math., 97 (1975) 148-171. MR 0365537 (51:1789)
  • 26. -, Proximal flows, Lecture Notes in Mathematics, Vol. 517. Springer-Verlag, Berlin-New York, 1976. MR 0474243 (57:13890)
  • 27. W. Huang and X. Ye, Homeomorphisms with the whole compacta being scrambled sets, Ergodic Theory Dynam. Systems, 21 (2001), 77-91. MR 1826661 (2002d:37020)
  • 28. A. Iwanik, Independence and scrambled sets for chaotic mappings, The mathematical heritage of C. F. Gauss, 372-378, World Sci. Publ., River Edge, NJ, 1991. MR 1146241 (92k:58176)
  • 29. W. Huang and X. Ye, Devaney's chaos or $ 2$-scattering implies Li-Yorke chaos, Topology Appl. 117 (2002), 259-272. MR 1874089 (2003b:37017)
  • 30. K. Janková and J. Smítal, A characterization of chaos, Bull. Aust. Math. Soc., 34 (1986) 283-292. MR 854575 (87k:58178)
  • 31. I. Kan, A chaotic function possessing a scrambled set with positive Lebesgue measure, Proc. Amer. Math. Soc., 92 (1984) 45-49. MR 749887 (86b:26009a)
  • 32. S. F. Kolyada, Li-Yorke sensitivity and other concepts of chaos, Ukrainian Math. J. 56 (2004), 1242-1257. MR 2136308 (2005k:37028)
  • 33. S. Li, $ \omega$-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), 243-249. MR 1108612 (93k:58153)
  • 34. T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. MR 0385028 (52:5898)
  • 35. G. Liao and L. Wang, Almost periodicity and distributional chaos. Foundations of computational mathematics (Hong Kong, 2000), 189-210, World Sci. Publ., River Edge, NJ, 2002 MR 2021982 (2004m:37016)
  • 36. J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps, Topology 32 (1993), 649-664. MR 1231969 (94k:58113)
  • 37. R. Mané, Ergodic theory and diferentiable dynamics, Springer-Verlag, Berlin, 1987. MR 889254 (88c:58040)
  • 38. M. Martelli, M. Dang and T. Seph, Defining Chaos, Math. Mag., 71 (1998) 112-122. MR 1706086 (2000g:37001)
  • 39. M. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Pol. Sci., Sér. Sci. Math., 27 (1979) 167-169. MR 542778 (81b:58033)
  • 40. -, Chaos almost everywhere, Iteration theory and its functional equations, Proc. Int. Symp., Schloß Hofen (Lochau)/Austria 1984, Lect. Notes Math., 1163 (1985) 125-130. MR 829765 (87e:58152)
  • 41. M. Morse and G. A. Hedlund, Symbolic Dynamics, Amer. J. Math., 60 (1938) 815-866. MR 1507944
  • 42. -, Symbolic dynamics. II. Sturmian trajectories, Amer. J. Math., 62 (1940) 1-42 . MR 0000745 (1:123d)
  • 43. E. Murinová, Generic chaos in metric spaces, Acta Univ. M. Belii Ser. Math., 8 (2000) 43-50. MR 1857201 (2002h:37017)
  • 44. P. Oprocha, Relations between distributional and Devaney chaos, Chaos, 16 (2006) 033112. MR 2265261 (2007g:37009)
  • 45. -, Specification properties and dense distributional chaos, Discrete Contin. Dyn. Syst., 17 (2007) 821-833. MR 2276477 (2008a:37022)
  • 46. P. Oprocha and P. Wilczyñski, Shift spaces and distributional chaos, Chaos, Solitons and Fractals, 31 (2007) 347-355. MR 2259760 (2007i:37019)
  • 47. R. Pikuła, On some notions of chaos in dimension zero, Colloq. Math., 107 (2007), 167-177 MR 2284159 (2007m:37021)
  • 48. J. Piórek, On the generic chaos in dynamical systems, Univ. Iagel. Acta Math., 25 (1985) 293-298. MR 837847 (87h:58131)
  • 49. D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 20 (1971) 167-192. MR 0284067 (44:1297)
  • 50. S. Ruette, Dense chaos for continuous interval maps, Nonlinearity, 18 (2005) 1691-1698. MR 2150350 (2006c:37038)
  • 51. B. Schweizer, A. Sklar and J. Smítal, Distributional (and other) chaos and its measurement, Real. Anal. Exch., 27 (2001/2002) 495-524. MR 1844132 (2002c:37056)
  • 52. B. Schweizer and J. Smítal, Measure of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737-754. MR 1227094 (94k:58091)
  • 53. A. Sklar and J. Smítal, Distributional chaos on compact metric spaces via specification properties, J. Math. Anal. Appl. 241 (2000), 181-188. MR 1739200 (2000k:37021)
  • 54. J. Smítal, A chaotic function with some extremal properties, Proc. Amer. Math. Soc., 87 (1983) 54-56. MR 677230 (84h:26008)
  • 55. -, A chaotic function with a scrambled set of positive Lebesgue measure, Proc. Amer. Math. Soc., 92 (1984) 50-54. MR 749888 (86b:26009b)
  • 56. -, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986) 269-282. MR 849479 (87m:58107)
  • 57. -, Various notions of chaos, recent results, open problems, Various notions of chaos, recent results, open problems. Report on the Summer Symposium in Real Analysis XXVI. Real Anal. Exchange 2002, 26th Summer Symposium Conference, suppl., 81-85 MR 2182670
  • 58. J. Smítal and M. Stefánková, Distributional chaos for triangular maps. Chaos, Solitons and Fractals 21 (2004) 1125-1128. MR 2047330 (2005a:37017)
  • 59. L. Snoha, Generic chaos, Comment. Math. Univ. Carol., 31 (1990) 793-810. MR 1091377 (92b:58149)
  • 60. -, Dense chaos, Comment. Math. Univ. Carol., 33 (1992) 747-752. MR 1240197 (94i:58128)
  • 61. S. Wiggins, Chaotic transport in dynamical systems, Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 1992 MR 1139113 (93c:58152)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37B99, 37D45, 37B10, 37B20

Retrieve articles in all journals with MSC (2000): 37B99, 37D45, 37B10, 37B20


Additional Information

Piotr Oprocha
Affiliation: Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Email: oprocha@agh.edu.pl

DOI: https://doi.org/10.1090/S0002-9947-09-04810-7
Keywords: Distributional chaos, chaotic pair, Li-Yorke chaos
Received by editor(s): October 17, 2007
Published electronically: April 13, 2009
Dedicated: Dedicated to Professor Jaroslav Smítal on the occasion of his 65th birthday.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society