Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Reduced standard modules and cohomology


Authors: Edward T. Cline, Brian J. Parshall and Leonard L. Scott
Journal: Trans. Amer. Math. Soc. 361 (2009), 5223-5261
MSC (2000): Primary 20Gxx
DOI: https://doi.org/10.1090/S0002-9947-09-04633-9
Published electronically: May 14, 2009
MathSciNet review: 2515810
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: First cohomology groups of finite groups with nontrivial irreducible coefficients have been useful in several geometric and arithmetic contexts, including Wiles's famous paper (1995). Internal to group theory, $ 1$-cohomology plays a role in the general theory of maximal subgroups of finite groups, as developed by Aschbacher and Scott (1985). One can pass to the case where the group acts faithfully and the underlying module is absolutely irreducible. In this case, R. Guralnick (1986) conjectured that there is a universal constant bounding all of the dimensions of these cohomology groups. This paper provides the first general positive results on this conjecture, proving that the generic 1-cohomology $ H^1_{\operatorname{gen}}(G,L) :=\underset{q\to\infty}{\lim} H^1(G(q),L)$ (see Cline, Parshall, Scott, and van der Kallen) (1977) of a finite group $ G(q)$ of Lie type, with absolutely irreducible coefficients $ L$ (in the defining characteristic of $ G$), is bounded by a constant depending only on the root system. In all cases, we are able to improve this result to a bound on $ H^1(G(q),L)$ itself, still depending only on the root system. The generic $ H^1$ result, and related results for $ \operatorname{Ext}^1$, emerge here as a consequence of a general study, of interest in its own right, of the homological properties of certain rational modules $ \Delta^{\text{\rm red}}(\lambda), \nabla_{\text{\rm red}}(\lambda)$, indexed by dominant weights $ \lambda$, for a reductive group $ G$. The modules $ \Delta^{\text{\rm red}}(\lambda)$ and $ \nabla_{\text{\rm red}}(\lambda)$ arise naturally from irreducible representations of the quantum enveloping algebra $ U_\zeta$ (of the same type as $ G$) at a $ p$th root of unity, where $ p>0$ is the characteristic of the defining field for $ G$. Finally, we apply our $ \operatorname{Ext}^1$-bounds, results of Bendel, Nakano, and Pillen (2006), as well as results of Sin (1993), (1992), (1994) on the Ree and Suzuki groups to obtain the (non-generic) bounds on $ H^1(G(q),L)$.


References [Enhancements On Off] (What's this?)

  • 1. H. Andersen, Extensions of modules for algebraic groups, Amer. J. Math. 106 (1984), 489-504. MR 737781 (86g:20056)
  • 2. H. Andersen, $ p$-filtrations and the Steinberg module, J. Algebra 244 (2001), 664-683. MR 1859043 (2002k:20080)
  • 3. H. Andersen and J. Jantzen, Cohomology of induced representations of algebraic groups, Math. Ann. 269 (1984), 487-525. MR 766011 (86g:20057)
  • 4. H. Andersen, J. Jantzen, and W. Soergel, Representations of quantum groups at a $ p$th root of unity and of semisimple groups in characteristic $ p$, Astérique 220 (1994).
  • 5. H. Andersen, P. Polo, and K. Wen, Representations of quantum algebras, Invent. Math. 104 (1991), 571-604. MR 1094046 (92e:17011)
  • 6. M. Aschbacher and L. Scott, Maximal subgroups of finite groups J. Algebra 192 (1985), 44-80. MR 772471 (86m:20029)
  • 7. G. Avrunin, Generic cohomology for twisted groups, Trans. Amer. Math. Soc. 268 (1981), 247-253. MR 628457 (82m:20048)
  • 8. C. Bendel, D. Nakano, and C. Pillen, Extensions of finite groups of Lie type II: filtering the truncated induction functor, Contemporary Math. 413 (2006), 1-23. MR 2262362 (2007i:20074)
  • 9. N. Bourbaki, Groupes et algèbres de Lie, IV, V, VI, Hermann (1968). MR 0240238 (39:1590)
  • 10. J. Bray and R. Wilson, Examples of $ 3$-dimensional $ 1$-cohomology for absolutely irreducible modules of finite simple groups, to appear.
  • 11. C. Chevalley, Sur certains groupes simples, Töhoku Math. J. 7 (1955), 14-66. MR 0073602 (17:457c)
  • 12. E. Cline, B. Parshall, and L. Scott, Detecting rational cohomology of algebraic groups, J. London Math. Soc. 28 (1983), 293-300. MR 713384 (84j:20046)
  • 13. E. Cline, B. Parshall, and L. Scott, Abstract Kazhdan-Lusztig theories, Tôhoku Math. J. 45 (1993), 511-534. MR 1245719 (94k:20079)
  • 14. E. Cline, B. Parshall, and L. Scott, The homological dual of a highest weight category, Proc. London Math. Soc. 68 (1994), 294-316. MR 1253506 (94m:20093)
  • 15. E. Cline, B. Parshall, and L. Scott, Simulating perverse sheaves in modular representation theory, Proc. of Symposia in Pure Math. 56(1) (1994), 63-104. MR 1278701 (95i:20061)
  • 16. E. Cline, B. Parshall, and L. Scott, Rational and $ q$-generic representation theory, Publ. RIMS (Kyoto) 35 (1999), 31-90. MR 1681236 (2000i:20021)
  • 17. E. Cline, B. Parshall, and L. Scott, An $ \operatorname{Ext}$-transfer theorem for algebraic groups, J. Transformation Groups 9 (2004), 213-236. MR 2079133 (2005e:20069)
  • 18. E. Cline, B. Parshall, L. Scott and W. van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), 143-163. MR 0439856 (55:12737)
  • 19. J. Conway, R. Curtis, S. Norton, R. Parker, and R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985). MR 827219 (88g:20025)
  • 20. J. Du and L. Scott, Lusztig conjectures, old and new, I, J. Reine Angew. Math. 455 (1994), 141-182. MR 1293877 (95i:20062)
  • 21. E. Friedlander and B. Parshall, Cohomology of infinitesimal and discrete groups, Math. Annalen 273 (1986), 353-374. MR 824427 (87e:22026)
  • 22. D. Happel, Triangulated Categories in the Representation of Finite Dimensional Algebras (London Mathematical Society Lecture Note Series) 119 (1988). MR 935124 (89e:16035)
  • 23. R. Guralnick, The dimension of the first cohomology groups, in: Representation Theory, II, Ottawa (1984), in: Lectures Notes in Math. 1178, Springer (1986), 94-97. MR 842479 (87h:20095)
  • 24. R. Guralnick and C. Hoffman, The first cohomology group and generation of simple groups, in: Groups and Geometries, Siena (1996), in: Trends Math. Birkhäuser (1998), 81-89. MR 1644977 (99h:20087)
  • 25. R. Guralnick, Cohomology and permutations, Oberwolfach Report No. 15/2006 (2006), 13-15. (This article reports on the preprints, ``Presentations of finite simple groups: cohomological and profinite approaches'' and ``Presentations of finite simple groups: a quantative approach'' by R. Guralnick, W. Kantor, M. Kassabov, and A. Lubotzky.)
  • 26. J. C. Jantzen, Representations of algebraic groups, 2nd ed., American Mathematical Society (2003). MR 2015057 (2004h:20061)
  • 27. J. C Jantzen, Lectures on Quantum Groups, Grad. Studies in Math. 6, Amer. Math. Soc., 1996. MR 1359532 (96m:17029)
  • 28. S. I. Kato, On Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. Math. 55 (1985), 103-130. MR 772611 (86d:20048)
  • 29. D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I-III; IV-VI, J. Amer. Math. Soc. 6 (1993), 905-1011; 7 (1994), 335-453.
  • 30. S. Kumar, N. Lauritzen, and J. Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), 603-621. MR 1695207 (2000g:20088)
  • 31. Z. Lin, Highest weight modules for algebraic groups arising from quantum groups, J. Algebra 208 (1998), 276-303. MR 1644011 (99k:20087)
  • 32. G. Lusztig, Some problems in the representation theory of finite Chevalley groups, Proc. Symp. Pure Math. 37 (1980), 313-317. MR 604598 (82i:20014)
  • 33. G. Lusztig, Quantum groups at roots of $ 1$, Geom. Dedicata 35 (1990), 89-114. MR 1066560 (91j:17018)
  • 34. B. Parshall and L. Scott, Quantum Weyl reciprocity for cohomology, Proc. London Math. Soc. 90(3) (2005), 655-688. MR 2137826 (2006d:20089)
  • 35. B. Parshall and L. Scott, Extensions, Levi subgroups and character formulas, J. Algebra, 319 (2008), no. 2, 680-701. MR 2381802 (2008j:20136)
  • 36. B. Parshall and L. Scott, Beyond the Jantzen region, Oberwolfach Report No. 15/2006 (2006), 26-30.
  • 37. B. Parshall and L. Scott, Some $ {\mathbb{Z}}/2$-graded representation theory, The Quarterly J. Math, in press.
  • 38. D. Quillen, On the cohomology and $ K$-theory of the general linear groups over a finite field. Ann. of Math. 96 (1972), 552-586. MR 0315016 (47:3565)
  • 39. L. Scott, Some new examples in $ 1$-cohomology, J. Algebra 260 (2003), 416-425. MR 1976701 (2004f:20092)
  • 40. L. Scott, Semistandard filtrations and highest weight categories, Michigan J. Math., to appear.
  • 41. L. Scott and N. Xi, Some non-trivial Kazhdan-Lusztig coefficients of an affine Weyl group of type $ \widetilde A_n$, to appear.
  • 42. P. Sin, Extensions of simple modules for $ G_1(3^n)$ and $ ^2G_2(3^m)$, Proc. London Math. Soc. 66 (1993), 327-357. MR 1199070 (94a:20020)
  • 43. P. Sin, Extensions of simple modules for $ Sp_4(2^n)$ and $ Suz(2^m)$, Bull. London Math. Soc. 24 (1992), 159-164. MR 1148676 (93b:20025)
  • 44. P. Sin, The cohomology of degree 1 of the group $ F_4$ in characteristic 2 with coefficients in a simple module J. Algebra 164 (1994), 695-717. MR 1272111 (95c:20063)
  • 45. R. Steinberg, Lectures on Chevalley Groups (notes by J. Faulkner and R. Wilson), Yale University (1968). MR 0466335 (57:6215)
  • 46. T. Tanisaki, Character formulas of Kazhdan-Lusztig type, Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun. 40, Amer. Math. Soc., Providence, RI (2004) 261-276. MR 2057399 (2005h:17046)
  • 47. A. Wiles, Modular elliptic curves and Fermat's last theorem, Annals of Math. 141 (1995), 443-551. MR 1333035 (96d:11071)
  • 48. N. Xi, The leading coefficient of certain Kazhdan-Lusztig polynomials for the permutation group $ {\mathfrak{S}}_n$, J. Algebra 285 (2005), 136-145. MR 2119108 (2006a:20013)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20Gxx

Retrieve articles in all journals with MSC (2000): 20Gxx


Additional Information

Edward T. Cline
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
Email: ecline@math.ou.edu

Brian J. Parshall
Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
Email: bjp8w@virginia.edu

Leonard L. Scott
Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
Email: lls2l@virginia.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04633-9
Received by editor(s): July 5, 2007
Received by editor(s) in revised form: September 5, 2007
Published electronically: May 14, 2009
Additional Notes: This research was supported in part by the National Science Foundation
Dedicated: We dedicate this paper to Toshiaki Shoji on the occasion of his 60th birthday
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society