A COMPARISON PRINCIPLE
FOR THE COMPLEX MONGE-AMPE`RE OPERATOR
IN CEGRELL’S CLASSES AND APPLICATIONS

NGUYEN VAN KHUE AND PHAM HOANG HIEP

Abstract. In this article we will first prove a result about the convergence
in capacity. Next we will obtain a general decomposition theorem for complex
Monge-Amp`ere measures which will be used to prove a comparison principle
for the complex Monge-Amp`ere operator.

1. Introduction

Let \(\Omega \) be a bounded hyperconvex domain in \(\mathbb{C}^n \). Denote by \(\text{PSH}(\Omega) \) the set of
plurisubharmonic (psh) functions on \(\Omega \) and by \(\text{PSH}^{-}(\Omega) \) the subclass of negative
functions. In [4], [5] the authors established and used the comparison principle
to study the Dirichlet problem of the complex Monge-Amp`ere operator in \(\text{PSH} \cap L^\infty_{\text{loc}}(\Omega) \). Recently, Cegrell introduced a general class \(\mathcal{E} \) of psh functions on which
the complex Monge-Amp`ere operator \((dd^c)^n\) is well defined. He obtained many
important results of pluripotential theory in the class \(\mathcal{E} \) (see [7]–[9]).

The main results of our paper are Theorem 4.1 and some Xing-type comparison
principles. Theorem 4.1 generalizes Lemma 5.4 in [7], Lemma 7.2 in [1] and Lemma
3.4 in [9]. For definitions of Cegrell’s classes, see Section 2. After giving some
preliminaries, we start in Proposition 3.1 with a comparison principle, which is
analogous to a comparison principle due to Xing (Lemma 1 in [19]). It should be
observed that our proof is quite different from Xing’s proof, and the inequality we
obtain is slightly stronger than Xing’s inequality, even in the case of bounded psh
functions. Using Proposition 3.1, we give in Theorem 3.5 a sufficient condition for
convergence in \(C_n \)-capacity of a sequence of psh functions in the class \(\mathcal{F} \). This
result should be compared to Theorem 3 of [19] in which bounded psh functions
were studied. Applying Theorem 3.5 we give generalizations of recent results in
[11] and [12] about convergences of multipole Green functions and a criterion for
pluripolarity, respectively. Section 4 focuses on Theorem 4.1 and Theorem 4.9.
By applying Theorem 4.1 we give some results on Cegrell’s classes. We prove
in Proposition 4.4 a local estimate for the Monge-Amp`ere measures in terms of
the Bedford-Taylor relative capacity. As an application, we give in Theorem 4.5
a decomposition result for Monge-Amp`ere measures, which is similar in spirit to
Theorem 6.3 in [7]. From Proposition 3.1 and Theorem 4.1 we obtain easily a
Xing-type comparison principle for functions in classes \(\mathcal{F} \) and \(\mathcal{E} \).
2. Preliminaries

First we recall some elements of pluripotential theory that will be used throughout the paper. See also [5], [7], [8], [19], [20].

2.1. We will always denote by Ω a bounded hyperconvex domain in \(\mathbb{C}^n \) unless otherwise stated. The \(C_n \)-capacity in the sense of Bedford and Taylor on \(\Omega \) is the set function given by

\[
C_n(E) = C_n(E, \Omega) = \sup \left\{ \int_E (dd^c u)^n : u \in \text{PSH}(\Omega), -1 \leq u \leq 0 \right\}
\]

for every Borel set \(E \) in \(\Omega \). It is proved in [5] that

\[
C_n(E) = \int_E (dd^c h_E)^n,
\]

where \(h_E \) is the upper regularization of the relative extremal function \(h_{E, \Omega} \) for \(E \) (relative to \(\Omega \)) i.e.,

\[
h_{E, \Omega}(z) = \sup \{ u(z) : u \in \text{PSH}^-(\Omega), u \leq -1 \text{ on } E \}.
\]

The following concepts are taken from [19] and [20].

* A sequence of functions \(u_j \) on \(\Omega \) is said to converge to a function \(u \) in \(C_n \)-capacity on a set \(E \subset \Omega \) if for every \(\delta > 0 \) we have \(C_n(\{ z \in E : |u_j(z) - u(z)| > \delta \}) \to 0 \) as \(j \to \infty \).

* A family of positive measures \(\{ \mu_\alpha \} \) on \(\Omega \) is said to be uniformly absolutely continuous with respect to \(C_n \)-capacity in a set \(E \subset \Omega \) if for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for each Borel subset \(F \subset E \) with \(C_n(F) < \delta \) the inequality \(\mu_\alpha(F) < \epsilon \) holds for all \(\alpha \). We write \(\mu_\alpha \ll C_n \) in \(E \) uniformly for \(\alpha \).

2.2. The following classes of psh functions were introduced by Cegrell in [7] and [8]:

\[
\mathcal{E}_0 = \mathcal{E}_0(\Omega) = \{ \varphi \in \text{PSH}^-(\Omega) \cap L^\infty(\Omega) : \lim_{z \to \partial \Omega} \varphi(z) = 0, \int_\Omega (dd^c \varphi)^n < +\infty \},
\]

\[
\mathcal{F} = \mathcal{F}(\Omega) = \{ \varphi \in \text{PSH}^-(\Omega) : \exists \mathcal{E}_0(\Omega) \varphi_j \searrow \varphi, \sup_{j \geq 1} \int_\Omega (dd^c \varphi_j)^n < +\infty \},
\]

\[
\mathcal{E} = \mathcal{E}(\Omega) = \{ \varphi \in \text{PSH}^-(\Omega) : \exists \mathcal{F}(\Omega) \varphi_K = \varphi \text{ on } K, \forall K \Subset \Omega \},
\]

\[
\mathcal{E}^\alpha = \mathcal{E}^\alpha(\Omega) = \{ u \in \mathcal{E}(\Omega) : (dd^c u)^n(E) = 0 \forall E \text{ is pluripolar in } \Omega \}.
\]

2.3. Let \(A = \{(w_j, \nu_j)\}_{j=1}^p \) be a finite subset of \(\Omega \times \mathbb{R}^+ \). According to Lelong (see [18]), the pluricomplex Green function with poles in \(A \) is defined by

\[
g(A)(z) = \sup \{ u(z) : u \in \mathcal{L}_A \},
\]

where

\[
\mathcal{L}_A = \{ u \in \text{PSH}^-(\Omega) : u(z) - \nu_j \log |z - w_j| \leq O(1) \text{ as } z \to w_j, j = 1, \ldots, p \}.
\]

Set

\[
\nu(A) = \sum_{j=1}^p \nu_j^n, \quad \hat{A} = \{ w_j \}_{j=1}^p.
\]
2.4. We write \(\lim_{z \to \partial \Omega} [u(z) - v(z)] \geq a \) if for every \(\epsilon > 0 \) there exists a compact set \(K \) in \(\Omega \) such that
\[
u(z) - v(z) \geq a - \epsilon \quad \text{for} \quad z \in (\Omega \setminus K) \cap \{u > -\infty\}
\]
and
\[
u(z) = -\infty \quad \text{for} \quad z \in (\Omega \setminus K) \cap \{u = -\infty\}.
\]

2.5. Xing’s comparison principle (see Lemma 1 in [1]). Let \(\Omega \) be a bounded open subset in \(\mathbb{C}^n \) and \(u, v \in \text{PSH} \cap L^\infty(\Omega) \) satisfy \(\lim_{z \to \partial \Omega} [u(z) - v(z)] \geq 0 \). Then for any constant \(r \geq 1 \) and all \(w_j \in \text{PSH}(\Omega) \) with \(0 \leq w_j \leq 1 \), \(j = 1, 2, \ldots, n \) we have
\[
\frac{1}{(n!)^2} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int_{\{u < v\}} \frac{1}{(r - w_1)(dd^c v)^n} \leq \int_{\{u < v\}} (r - w_1)(dd^c u)^n.
\]

3. SOME CONVERGENCE THEOREMS

In order to study the convergence of a sequence of psh functions in \(C_n \)-capacity, we start with the following.

Proposition 3.1. a) Let \(u, v \in \mathcal{F} \) be such that \(u \leq v \) on \(\Omega \). Then for \(1 \leq k \leq n \),
\[
\frac{1}{k!} \int_{\Omega} (v - u)^k dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int_{\Omega} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge \ldots \wedge dd^c w_n
\]
\[
\leq \int_{\Omega} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge \ldots \wedge dd^c w_n,
\]
for all \(w_j \in \text{PSH}(\Omega) \), \(0 \leq w_j \leq 1 \), \(j = 1, \ldots, k \), \(w_{k+1}, \ldots, w_n \in \mathcal{F} \) and all \(r \geq 1 \).

b) Let \(u, v \in \mathcal{E} \) be such that \(u \leq v \) on \(\Omega \) and \(u = v \) on \(\Omega \setminus K \) for some \(K \in \Omega \). Then for \(1 \leq k \leq n \),
\[
\frac{1}{k!} \int_{\Omega} (v - u)^k dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int_{\Omega} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge \ldots \wedge dd^c w_n
\]
\[
\leq \int_{\Omega} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge \ldots \wedge dd^c w_n,
\]
for all \(w_j \in \text{PSH}(\Omega) \), \(0 \leq w_j \leq 1 \), \(j = 1, \ldots, k \), \(w_{k+1}, \ldots, w_n \in \mathcal{E} \) and all \(r \geq 1 \).

We proceed through some lemmas.

Lemma 3.2. Let \(u, v \in \text{PSH} \cap L^\infty(\Omega) \) be such that \(u \leq v \) on \(\Omega \) and
\[
\lim_{z \to \partial \Omega} [u(z) - v(z)] = 0.
\]
Then
\[
\int_{\Omega} (v - u)^k dd^c w \wedge T \leq k \int_{\Omega} (1 - w)(v - u)^{k-1} dd^c u \wedge T,
\]
for all \(w \in \text{PSH}(\Omega) \), \(0 \leq w \leq 1 \) and all positive closed currents \(T \).
Proof. First, assume \(u, v \in \text{PSH} \cap L^\infty(\Omega), u \leq v \) on \(\Omega \) and \(u = v \) on \(\Omega \setminus K, K \subset \Omega \).

Then, using the Stokes formula we obtain
\[
\int_{\Omega} (v - u)^k dd^c w \wedge T = \int_{\Omega} (v - u)^k dd^c (w - 1) \wedge T \\
= \int_{\Omega} (w - 1)dd^c (v - u)^k \wedge T \\
= -k(k - 1) \int_{\Omega} (1 - w)d(v - u) \wedge dd^c (v - u) \wedge T \\
+ k \int_{\Omega} (1 - w)(v - u)^{k-1}dd^c (u - v) \wedge T \\
\leq k \int_{\Omega} (1 - w)(v - u)^{k-1}dd^c (u - v) \wedge T \\
\leq k \int_{\Omega} (1 - w)(v - u)^{k-1}dd^c u \wedge T.
\]

In the general case, for each \(\epsilon > 0 \) we set \(v_\epsilon = \max(u, v - \epsilon) \). Then \(v_\epsilon \not\rightarrow v \) on \(\Omega \), \(v_\epsilon \geq u \) on \(\Omega \) and \(v_\epsilon = u \) on \(\Omega \setminus K \) for some \(K \subset \Omega \). Hence
\[
\int_{\Omega} (v_\epsilon - u)^k dd^c w \wedge T \leq k \int_{\Omega} (1 - w)(v_\epsilon - u)^{k-1}dd^c u \wedge T.
\]

Since \(0 \leq v_\epsilon - u \not\rightarrow v - u \) as \(\epsilon \searrow 0 \), letting \(\epsilon \searrow 0 \) we get
\[
\int_{\Omega} (v - u)^k dd^c w \wedge T \leq k \int_{\Omega} (1 - w)(v - u)^{k-1}dd^c u \wedge T.
\]

Lemma 3.3. Let \(u, v \in \text{PSH} \cap L^\infty(\Omega) \) be such that \(u \leq v \) on \(\Omega \) and
\[
\lim_{z \to \partial \Omega} [u(z) - v(z)] = 0.
\]

Then for \(1 \leq k \leq n \),
\[
\frac{1}{k!} \int_{\Omega} (v - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\Omega} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\Omega} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n
\]
for all \(w_1, ..., w_k \in \text{PSH}(\Omega), 0 \leq w_j \leq 1 \forall j = 1, ..., k, w_{k+1}, ..., w_n \in \mathcal{E} \) and all \(r \geq 1 \).

Proof. To simplify the notation we set
\[
T = dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]
First, assume that $u, v \in \text{PSH} \cap L^\infty(\Omega)$, $u \leq v$ on Ω, and $u = v$ on $\Omega \setminus K$, $K \Subset \Omega$. Using Lemma 3.2 we get

$$\int (v - u)^i \omega_1 \wedge ... \wedge \omega_n \leq k \int (v - u)^{k-1} \omega_1 \wedge ... \wedge \omega_{k-1} \wedge \omega \wedge T$$

$$\leq k! \int (v - u) \omega_1 \wedge (\omega)^{k-1} \wedge T$$

$$\leq k! \int (v - u) \omega_1 \wedge \left(\sum_{i=0}^{k-1} (\omega)^i \wedge (\omega)^{k-i-1} \right) \wedge T$$

$$= k! \int (w - r) \omega_1 \wedge \left(\sum_{i=0}^{k-1} (\omega)^i \wedge (\omega)^{k-i-1} \right) \wedge T$$

$$= k! \int (r - w) \omega_1 \wedge \left(\sum_{i=0}^{k-1} (\omega)^i \wedge (\omega)^{k-i-1} \right) \wedge T$$

$$= k! \int (r - w) (\omega)^k \wedge T.$$
for \(t \geq j \geq 1 \). By Proposition 5.1 in [8], letting \(t \to \infty \) in the above inequality, we have

\[
\frac{1}{k!} \int_{\Omega} (v_j - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\Omega} (r - w_1)(dd^c v_j)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\Omega} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n
\]

for \(j \geq 1 \). Next letting \(j \to \infty \) again by Proposition 5.1 in [8] we get the desired conclusion.

b) Let \(G, W \) be open sets such that \(K \Subset G \Subset W \Subset \Omega \). According to the remark after Definition 4.6 in [8] we can choose a function \(\tilde{v} \in \mathcal{F} \) such that \(\tilde{v} \geq v \) and \(\tilde{v} = v \) on \(W \). Set

\[
\tilde{u} = \begin{cases}
 u & \text{on } G, \\
 \tilde{v} & \text{on } \Omega \setminus G.
\end{cases}
\]

Since \(u = v = \tilde{v} \) on \(W \setminus K \) we have \(\tilde{u} \in \text{PSH}(\Omega) \). It is easy to see that \(\tilde{u} \in \mathcal{F} \), \(\tilde{u} \leq \tilde{v} \) and \(\tilde{u} = u \) on \(W \). By a) we have

\[
\frac{1}{k!} \int_{\Omega} (\tilde{v} - \tilde{u})^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\Omega} (r - w_1)(dd^c \tilde{v})^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\Omega} (r - w_1)(dd^c \tilde{u})^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]

Since \(\tilde{u} = \tilde{v} \) on \(\Omega \setminus G \) we have

\[
\frac{1}{k!} \int_{W} (\tilde{v} - \tilde{u})^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{W} (r - w_1)(dd^c \tilde{v})^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{W} (r - w_1)(dd^c \tilde{u})^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]

Since \(\tilde{u} = u \), \(\tilde{v} = v \) on \(W \) and \(u = v \) on \(\Omega \setminus K \) we obtain

\[
\frac{1}{k!} \int_{\Omega} (v - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\Omega} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\Omega} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]

\[\square\]

Proposition 3.4. Let \(u, v \in \mathcal{F} \) be such that \(u \leq v \) on \(\Omega \). Then

\[
\frac{1}{n!} \int_{\Omega} (v - u)^n dd^c w_1 \wedge ... \wedge dd^c w_n \leq \int_{\Omega} (-w_1)[(dd^c u)^n - (dd^c v)^n]
\]

for all \(w_j \in \text{PSH}(\Omega), -1 \leq w_j \leq 0, j = 1, ..., n. \)

Proof. The proposition follows from Proposition 3.1 with \(k = n, r = 1 \) and with \(w_j \) replaced by \(w_j + 1 \). \[\square\]
Theorem 3.5. Let $u, u_j \in \mathcal{F}$ be such that $u_j \leq u$ for $j \geq 1$. Assume that

$$\sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n < +\infty,$$

and $||(dd^c u_j)^n - (dd^c u)^n||_E \to 0$ as $j \to \infty$ for all $E \Subset \Omega$. Then $u_j \to u$ in C^n-capacity on every $E \Subset \Omega$ as $j \to \infty$.

Proof. Let $\Omega' \Subset \Omega$ and $\delta > 0$. Put

$$A_j = \{z \in \Omega' : |u_j - u| \geq \delta\} = \{z \in \Omega' : u - u_j \geq \delta\}.$$

We prove that $C_n(A_j) \to 0$ as $j \to \infty$. Given $\epsilon > 0$, by quasicontinuity of u and u_j, there is an open set G in Ω such that $C_n(G) < \epsilon$, and $u_j|_{\Omega\setminus G}$, $u|_{\Omega\setminus G}$ are continuous. We have

$$A_j = B_j \cup \{z \in G : u - u_j \geq \delta\},$$

where $B_j = \{z \in \Omega' \setminus G : u - u_j \geq \delta\}$ are compact sets in Ω and

$$\lim_{j \to \infty} C_n(A_j) \leq \lim_{j \to \infty} C_n(B_j) + \epsilon.$$

We claim that $\lim_{j \to \infty} C_n(B_j) = 0$. By Proposition 3.4 we have

$$C_n(B_j) = \int_{B_j} (dd^c h_{B_j}^*)^n$$

$$\leq \frac{1}{\delta^n} \int_{B_j} (u - u_j)^n (dd^c h_{B_j}^*)^n$$

$$\leq \frac{n!}{\delta^n} \int_{\Omega} (-h_{B_j}^*) [(dd^c u_j)^n - (dd^c u)^n]$$

$$\leq \frac{n!}{\delta^n} \{||(dd^c u_j)^n - (dd^c u)^n||_K + \int_{\Omega \setminus K} (-h_{\Omega'}) [(dd^c u_j)^n + (dd^c u)^n]\}$$

$$\leq \frac{n!}{\delta^n} \{||(dd^c u_j)^n - (dd^c u)^n||_K + \sup_{\Omega \setminus K} |h_{\Omega'}| \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n + \int_{\Omega} (dd^c u)^n\}.$$

As $\lim_{z \to \partial \Omega} h_{\Omega'}(z) = 0$ there exists $K \Subset \Omega$ such that

$$\frac{n!}{\delta^n} \sup_{\Omega \setminus K} |h_{\Omega'}| \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n + \int_{\Omega} (dd^c u)^n| < \epsilon.$$

By the hypothesis,

$$\frac{n!}{\delta^n} ||(dd^c u_j)^n - (dd^c u)^n||_K < \epsilon \text{ for } j > j_0.$$

Thus

$$C_n(B_j) < 2\epsilon \text{ for } j > j_0.$$

This proves the claim and hence the theorem. \qed
As an application of Theorem 3.5 we have the following.

Proposition 3.6. Let $g(A_j)$ be multipolar Green functions on Ω such that

$$\hat{A}_j = \{w_1^j, ..., w_p^j\} \to \partial \Omega$$

and $v(A_j) = \sup_{j \geq 1} \sum_{k=1}^{p_j} (u_k^j)^n < +\infty$.

Then $g(A_j) \to 0$ as $j \to \infty$ in C_n-capacity.

Proof. By the hypothesis we have

$$\sup_{j \geq 1} (dd^c g(A_j))^n(\Omega) = \sup_{j \geq 1} v(A_j) < +\infty$$

and

$$||(dd^c g(A_j))^n||_K \to 0 \text{ as } j \to \infty \text{ for all } K \in \Omega.$$

Theorem 3.5 implies that $g(A_j) \to 0$ as $j \to \infty$ in C_n-capacity. \square

This section ends with a criterion for pluripolarity.

Theorem 3.7. Let $u_j \in \mathcal{F}$ be such that $\sup_{j \geq 1} (dd^c u_j)^n < +\infty$.

Then there is a constant $A > 0$ such that

i) $(\lim_{j \to \infty} u_j)^* \in \mathcal{F}$,

ii) $C_n(\{z \in \Omega : (\lim_{j \to \infty} u_j)^*(z) < -t\}) \leq \frac{A}{t^n}$,

iii) $\{z \in \Omega : \lim_{j \to \infty} u_j(z) = -\infty\}$ is pluripolar.

Proof. i) For each $j \geq 1$ put $v_j = \sup\{u_j, u_{j+1}, \ldots\}$. By \[8\], $v_j^* \in \mathcal{F}$ and

$$\sup_{j \geq 1} \int_{\Omega} (dd^c v_j^*)^n \leq \sup_{j \geq 1} \int_{\Omega} (dd^c u_j)^n < +\infty.$$

By \[8\] we have $v_j^* \searrow v \in \mathcal{F}$.

ii) By Proposition 3.1 in \[10\] we have

$$C_n(\{z \in \Omega : (\lim_{j \to \infty} u_j)^*(z) < -t\}) = C_n(\{z \in \Omega : v(z) < -t\}) \leq \frac{2^n}{t^n} \int_{\Omega} (dd^c v)^n = \frac{A}{t^n},$$

where $A = 2^n \int_{\Omega} (dd^c v)^n$.

iii) According to \[8\] we have

$$C_n(\{z \in \Omega : \lim_{j \to \infty} u_j(z) = -\infty\}) = C_n(\{z \in \Omega : v(z) = -\infty\}) = 0.$$

\square

Remark. Theorem 3.7 in the case where the u_j are multipole Green functions was proved by D. Coman, N. Levenberg and A. Poletsky in Theorem 4.1 of \[12\].

4. Some properties of Cegrell’s classes and applications

In this section, first we prove the following.

Theorem 4.1. Let $u, u_1, \ldots, u_{n-1} \in \mathcal{E}$, $v \in PSH(\Omega)$ and $T = dd^c u_1 \wedge \ldots \wedge dd^c u_{n-1}$. Then

$$dd^c \max(u, v) \wedge T|_{\{u>v\}} = dd^c u \wedge T|_{\{u>v\}}.$$

We need the following well-known fact.
Lemma 4.2. Let μ be a Borel measure on Ω and $f : \Omega \to \mathbb{R}$ a measurable function on Ω. The following are equivalent:

i) $\mu(E) = 0$ for all Borel sets $E \subset \{ f \neq 0 \}$,

ii) $\int \int_E fd\mu = 0$ for all Borel sets E in Ω.

Proof. i)\Rightarrowii) follows from:

$$\int_E fd\mu = \int_{E \setminus \{f = 0\}} fd\mu + \int_0 fd\mu = 0.$$

ii)\Rightarrowi). It suffices to show that $\mu = 0$ on every $X_\delta = \{ f > \delta > 0 \}$. By the Hahn decomposition theorem, there exist measurable subsets X_δ^+ and X_δ^- of X_δ such that $X_\delta = X_\delta^+ \cup X_\delta^-$, $X_\delta^+ \cap X_\delta^- = \emptyset$ and $\mu \geq 0$ on X_δ^+, $\mu \leq 0$ on X_δ^-. We have

$$\begin{cases}
\delta \mu(X_\delta^+) \leq \int_{X_\delta^+} fd\mu = 0, \\
\delta \mu(X_\delta^-) \geq \int_{X_\delta^-} fd\mu = 0.
\end{cases}$$

Hence, $\mu(X_\delta^+) = \mu(X_\delta^-) = 0$. Therefore, we have $\mu = 0$ on X_δ. \hfill \square

Proof of Theorem 4.1. a) First we prove the proposition for $v \equiv a < 0$. According to the remark following Definition 4.6 in [8], without loss of generality we may assume that $u, u_1, \ldots, u_{n-1} \in F$. Using Theorem 2.1 in [8] we can find

$$\mathcal{E}_0 \cap C(\Omega) \ni u^j \setminus u, \, \mathcal{E}_0 \cap C(\Omega) \ni u^i_k \setminus u_k, \, k = 1, \ldots, n - 1.$$

Since $\{u^j > a\}$ is open we have

$$dd^c \max(u^j, a) \wedge T_j|_{u^j > a} = dd^c u^j \wedge T_j|_{u^j > a}.$$

Thus from the inclusion $\{u > a\} \subset \{u^j > a\}$ we obtain

$$dd^c \max(u^j, a) \wedge T_j|_{u^j > a} = dd^c u^j \wedge T_j|_{u^j > a},$$

where $T_j = dd^c u_1^j \wedge \ldots \wedge dd^c u_{n-1}^j$. By Corollary 5.2 in [8], it follows that

$$\max(u - a, 0) dd^c \max(u^j, a) \wedge T_j \to \max(u - a, 0) dd^c u \wedge T,$$

$$\max(u - a, 0) dd^c u^j \wedge T_j \to \max(u - a, 0) dd^c u \wedge T.$$

Hence

$$\max(u - a, 0) dd^c \max(u, a) \wedge T - dd^c u \wedge T = 0.$$

Using Lemma 4.2 we have

$$dd^c \max(u, a) \wedge T = dd^c u \wedge T$$

on $\{u > a\}$.

b) Assume that $v \in PSH^-(\Omega)$. Since $\{u > v\} = \bigcup_{a \in \mathbb{Q}^-} \{u > a > v\}$, it suffices to show that

$$dd^c \max(u, v) \wedge T = dd^c u \wedge T$$

for all $a \in \mathbb{Q}^-$, the set of negative rational numbers. Since $\max(u, v) \in \mathcal{E}$, by a) we have

1) $dd^c \max(u, v) \wedge T|_{\max(u, v) > a} = dd^c \max(\max(u, v), a) \wedge T|_{\max(u, v) > a}$

2) $\quad = dd^c max(u, v) \wedge T|_{\max(u, v) > a},$

3) $\quad = dd^c max(u, a) \wedge T|_{u > a}.$
Since \(\max(u,v,a) = \max(u,a) \) on the open set \(\{a > v\} \), we have
\[dd^c \max(u,v,a) \wedge T|_{\{a > v\}} = dd^c \max(u,a) \wedge T|_{\{a > v\}}. \]

Since \(\{u > a > v\} \subset \{u > a\} \), \(\{a > v\} \), \(\{\max(u,v) > a\} \) and (1), (2), (3) we have
\[dd^c \max(u,v,a) \wedge T|_{\{a > u > v\}} = dd^c u \wedge T|_{\{u > a > v\}}. \]

The next result is an analogue of an inequality due to Demailly in [14]. □

Proposition 4.3. a) Let \(u, v \in \mathcal{E} \) be such that \((dd^c u)^n(\{u = v = -\infty\}) = 0\). Then
\[
(dd^c \max(u,v))^n \geq 1_{\{u \geq v\}}(dd^c u)^n + 1_{\{u < v\}}(dd^c v)^n,
\]
where \(1_E \) denotes the characteristic function of \(E \).

b) Let \(\mu \) be a positive measure which vanishes on all pluripolar subsets of \(\Omega \). Suppose \(u, v \in \mathcal{E} \) such that \((dd^c u)^n \geq \mu, (dd^c v)^n \geq \mu\). Then \((dd^c \max(u,v))^n \geq \mu\).

Proof. a) For each \(\epsilon > 0 \) put \(A_\epsilon = \{u = v - \epsilon\} \setminus \{u = v = -\infty\} \). Since \(A_\epsilon \cap A_\delta = \emptyset \) for \(\epsilon \neq \delta \) there exists \(\epsilon_j \searrow 0 \) such that \((dd^c u)^n(A_{\epsilon_j}) = 0 \) for \(j \geq 1 \). On the other hand, since \((dd^c u)^n(\{u = v = -\infty\}) = 0\) we have \((dd^c u)^n(\{u = v - \epsilon_j\}) = 0\) for \(j \geq 1 \). By Theorem 4.1 it follows that
\[
(dd^c \max(u,v - \epsilon_j))^n \geq (dd^c \max(u,v - \epsilon_j))^n|_{\{u > v - \epsilon_j\}} + (dd^c \max(u,v - \epsilon_j))^n|_{\{u < v - \epsilon_j\}}
\]
\[= (dd^c u)^n|_{\{u > v - \epsilon_j\}} + (dd^c v)^n|_{\{u < v - \epsilon_j\}}
\]
\[= 1_{\{u > v - \epsilon_j\}}(dd^c u)^n + 1_{\{u < v - \epsilon_j\}}(dd^c v)^n
\]
\[\geq 1_{\{u \geq v\}}(dd^c u)^n + 1_{\{u < v\}}(dd^c v)^n.
\]

Letting \(j \to \infty \) and by the remark following Theorem 5.15 in [3] we get
\[
(dd^c \max(u,v))^n \geq 1_{\{u \geq v\}}(dd^c u)^n + 1_{\{u < v\}}(dd^c v)^n,
\]
because \(\max(u,v - \epsilon_j) \nearrow \max(u,v) \) and \(1_{\{u < v - \epsilon_j\}} \nearrow 1_{\{u < v\}} \) as \(j \to \infty \).

b) The argument is the same as a). □

Proposition 4.4. Let \(u_1, \ldots, u_k \in PSH(\Omega) \cap L^\infty(\Omega) \) and \(u_{k+1}, \ldots, u_n \in \mathcal{E} \). Then
i) \(\int_B dd^c u_1 \wedge \cdots \wedge dd^c u_n = O(\langle C_n(B) \rangle^{\frac{1}{n}}) \) for all Borel sets \(B \subset \Omega' \subset \Omega \).

ii) \(\int_{B(a,r)} dd^c u_1 \wedge \cdots \wedge dd^c u_n = o(\langle C_n(B(a,r)) \rangle^{\frac{1}{n}}) \) as \(r \to 0 \) for all \(a \in \Omega \),
where \(B(a,r) = \{ z \in \mathbb{C}^n : |z - a| < r \} \).

Proof. We may assume that \(0 \leq u_j \leq 1 \) for \(j = 1, \ldots, k \). On the other hand, by the remark following Definition 4.6 in [3] we again may assume that \(u_{k+1}, \ldots, u_n \in \mathcal{F} \).
i) For each open set \(B \subset \Omega \), applying Proposition 3.1 and Corollary 5.6 in [8] we get

\[
\int_B dd^c u_1 \wedge \ldots \wedge dd^c u_n = \int_B \left(-h_B^*\right)^k dd^c u_1 \wedge \ldots \wedge dd^c u_n \\
\leq \int_{\Omega} \left(-h_B^*\right)^k dd^c u_1 \wedge \ldots \wedge dd^c u_n \\
\leq k! \int_{\Omega} (1 - u_1)(dd^c h_B^*)^k \wedge dd^c u_{k+1} \wedge \ldots \wedge dd^c u_n \\
\leq k! \int_{\Omega} (dd^c h_B^*)^k \wedge dd^c u_{k+1} \wedge \ldots \wedge dd^c u_n \\
\leq k! \int_{\Omega} \left[(dd^c u_{k+1})^n\right]^1 \ldots \left[(dd^c u_n)^n\right]^1 [C_n(B)]^k \\
\leq \text{constants} [C_n(B)]^k.
\]

Hence

\[
\int_B dd^c u_1 \wedge \ldots \wedge dd^c u_n \leq \text{constants} [C_n(B)]^k
\]

for all Borel sets \(B \subset \Omega \).

ii) By Proposition 3.1 we have

\[
\int_{\Omega} (-\varphi)^k dd^c u_1 \wedge \ldots \wedge dd^c u_n \leq k! \int_{\Omega} (1 - u_1)(dd^c \varphi)^k \wedge dd^c u_{k+1} \wedge \ldots \wedge dd^c u_n \\
\leq k! \int_{\Omega} (dd^c \varphi)^k \wedge dd^c u_{k+1} \wedge \ldots \wedge dd^c u_n < +\infty.
\]

Hence \((-\varphi)^k \in L_1(dd^c u_1 \wedge \ldots \wedge dd^c u_n)\) for all \(\varphi \in \mathcal{F}(\Omega) \). Given \(a \in \Omega \) let \(r_0, R_0 \) be such that \(B(a, r_0) \Subset \Omega \Subset B(a, R_0) \). Then

\[
\log \frac{|z - a|}{R_0} = \log g_a(z) \leq \log \frac{|z - a|}{r_0},
\]

for all \(z \in \Omega \), where \(g_a \) denotes the Green function of \(\Omega \) with pole at \(a \). Since \((-g_a)^k \in L_1(dd^c u_1 \wedge \ldots \wedge dd^c u_n)\), it follows that

\[
\int_{B(a, r)} (-g_a)^k dd^c u_1 \wedge \ldots \wedge dd^c u_n \to 0 \text{ as } r \to 0.
\]

Hence

\[
(log r_0 - log r)^k \int_{B(a, r)} dd^c u_1 \wedge \ldots \wedge dd^c u_n \leq \int_{B(a, r)} (-g_a)^k dd^c u_1 \wedge \ldots \wedge dd^c u_n \to 0
\]
as $r \to 0$. This means that
\[
\int_{B(a,r)} dd^c u_1 \wedge ... \wedge dd^c u_n = o((\frac{1}{\log r_{0} - \log r})^k) \text{ as } r \to 0.
\]
Combining this with the inequality
\[
C_n(B(a,r),\Omega) \geq C_n(B(a,r),B(a,R_0)) = (\frac{1}{\log R_0 - \log r})^n = O((\frac{1}{\log r_{0} - \log r})^n),
\]
we get
\[
\int_{B(a,r)} dd^c u_1 \wedge ... \wedge dd^c u_n = o((C_n(B(a,r)))^n).
\]
The next result should be compared with Theorem 6.3 in [7].

Theorem 4.5. Let $u_1, ..., u_n \in \mathcal{E}$. Then there exists $\tilde{u} \in \mathcal{E}^a$ such that
\[
dd^c u_1 \wedge ... \wedge dd^c u_n = (dd^c \tilde{u})^n + dd^c u_1 \wedge ... \wedge dd^c u_n|_{\{u_1 = ... = u_n = -\infty\}}.
\]

Proof. First, we write
\[
dd^c u_1 \wedge ... \wedge dd^c u_n = \mu + dd^c u_1 \wedge ... \wedge dd^c u_n|_{\{u_1 = ... = u_n = -\infty\}},
\]
where
\[
\mu = dd^c u_1 \wedge ... \wedge dd^c u_n|_{\{u_1 = ... = -j\cup...\cup u_n = -\infty\}}.
\]
It is easy to see that $\mu \ll C_n$ in every $E \in \Omega$. Indeed, by Theorem 4.1 we have
\[
dd^c u_1 \wedge ... \wedge dd^c u_n|_{\{u_1 = ... = -j\}} = dd^c \max(u_1, ... , -j) \wedge ... \wedge dd^c u_n|_{\{u_1 = ... = -j\}}.
\]
Hence, by Proposition 4.4 (i) it follows that $dd^c u_1 \wedge ... \wedge dd^c u_n|_{\{u_1 = ... = -j\}} \ll C_n$ in every $E \in \Omega$. Next, it remains to show that there exists $\tilde{u} \in \mathcal{E}^a$ such that $\mu = (dd^c \tilde{u})^n$. Let $\{\Omega_j\}$ be an increasing exhaustion sequence of Ω. For each $j \geq 1$ put $\mu_j = \mu|_{\Omega_j}$. By [4] there exists $\tilde{u}_j \in \mathcal{F}$ such that $(dd^c \tilde{u}_j)^n = \mu_j$. Notice that $\mu_j \neq \mu$ and
\[
(dd^c \tilde{u}_j)^n \leq \mu \leq (dd^c(u_1 + ... + u_n))^n.
\]
Applying the comparison principle we obtain
\[
\tilde{u}_j \wedge \tilde{u} \geq u_1 + ... + u_n \in \mathcal{E}.
\]
Hence, $\tilde{u} \in \mathcal{E}^a$ and $(dd^c \tilde{u})^n = \lim_{j \to \infty} (dd^c \tilde{u}_j)^n = \mu$. The proof is thereby completed.

Corollary 4.6. $u_1, ..., u_n \in \mathcal{E}$. Then the following are equivalent:
1) $dd^c u_1 \wedge ... \wedge dd^c u_n \ll C_n$ in every $E \in \Omega$,
2) $\int \left\{u_1 = ... = u_n = -\infty\right\} dd^c u_1 \wedge ... \wedge dd^c u_n = 0$,
3) $\int \left\{u_1 < -s, ..., u_n < -s\right\} dd^c u_1 \wedge ... \wedge dd^c u_n \to 0$ as $s \to +\infty$ for all $E \in \Omega$.

Proof. The proof is a direct application of Theorem 4.5.

The comparison principle for class \mathcal{F} was studied in [9] and [16], [17]. By using Proposition 3.1 and Theorem 4.1 we prove a Xing-type comparison principle for \mathcal{F}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 4.7. Let $u \in \mathcal{F}$, $v \in \mathcal{E}$ and $1 \leq k \leq n$. Then
\[
\frac{1}{k!} \int_{\{u < v\}} (v - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\{u < v\}} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n
\]
for all $w_j \in \text{PSH}(\Omega)$, $0 \leq w_j \leq 1$, $j = 1, ..., k$, $w_{k+1}, ..., w_n \in \mathcal{F}$ and all $r \geq 1$.

Proof. Let $\epsilon > 0$. We set $\tilde{v} = \max(u, v - \epsilon)$. By a) in Proposition 3.1 we have
\[
\frac{1}{k!} \int_\Omega (\tilde{v} - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_\Omega (r - w_1)(dd^c \tilde{v})^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_\Omega (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]
Since $\{u < \tilde{v}\} = \{u < v - \epsilon\}$ and using Theorem 4.1 we have
\[
\frac{1}{k!} \int_{\{u < v - \epsilon\}} (v - \epsilon - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n \\
+ \int_{\{u < v - \epsilon\}} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\{u \leq v - \epsilon\}} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n
\]
for all $w_j \in \text{PSH}(\Omega)$, $0 \leq w_j \leq 1$, $j = 1, ..., k$, $w_{k+1}, ..., w_n \in \mathcal{F}$ and all $r \geq 1$.

Letting $\epsilon \searrow 0$ we obtain
\[
\frac{1}{k!} \int_{\{u < v\}} (v - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \\
\leq \int_{\{u < v\} \cup \{u = v = -\infty\}} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]

\[\square\]

Corollary 4.8. Let $u \in \mathcal{E}^n$ be such that $u \geq v$ for all functions $v \in \mathcal{E}$ satisfying $(dd^c u)^n \leq (dd^c v)^n$. Then
\[
\frac{1}{n!} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1)(dd^c v)^n \\
\leq \int_{\{u < v\}} (r - w_1)(dd^c u)^n
\]
for all $v \in \mathcal{E}$, $r \geq 1$ and all $w_1, ..., w_n \in \text{PSH}(\Omega)$, $0 \leq w_1, ..., w_n \leq 1$.
Proof. Let \(\{\Omega_j\} \) be an increasing exhaustion sequence of relatively compact subdomains of \(\Omega \). Set \(\mu_j = 1_{\Omega_j} 1_{\{u > -j\}} (dd^c u)^n \), where \(1_E \) denotes the characteristic function of \(E \subset \Omega \). Applying Theorem 4.1 we have

\[
\mu_j = 1_{\Omega_j} 1_{\{u > -j\}} (dd^c \max(u, -j))^n \leq 1_{\Omega_j} (dd^c \max(u, -j))^n.
\]

Take \(\phi \in \mathcal{E}_0(\Omega) \cap C(\Omega) \). Put

\[
\phi_j = \max(u, -j, a_j \phi),
\]

where \(a_j = \frac{j}{\sup_{\Omega_{j+1}} \phi} \). Then \(\phi_j = \max(u, -j) \) on \(\Omega_{j+1} \), \(\phi_j \in \mathcal{E}_0 \) and

\[
\mu_j \leq 1_{\Omega_j} (dd^c \max(u, -j))^n = 1_{\Omega_j} (dd^c \phi_j)^n \leq (dd^c \phi_j)^n.
\]

By Kolodziej’s theorem (see [15]) there exists \(u_j \in \mathcal{E}_0 \) such that

\[
(dd^c u_j)^n = \mu_j = 1_{\Omega_j} 1_{\{u > -j\}} (dd^c u)^n
\]

for all \(j \geq 1 \). By the comparison principle we have \(u_j \searrow \tilde{u} \geq u \). On the other hand, since \((dd^c u)^n(\{u = -\infty\}) = 0 \), it follows that

\[
(dd^c u_j)^n = 1_{\Omega_j} 1_{\{u > -j\}} (dd^c u)^n \rightarrow (dd^c u)^n
\]

weakly as \(j \to \infty \). Thus \((dd^c \tilde{u})^n = \lim_{j \to \infty} (dd^c u_j)^n = (dd^c u)^n \). By the hypothesis we have \(\tilde{u} = u \). Applying Theorem 4.7 we get

\[
\frac{1}{n!} \int_{\{u < v\}} (v - u_j)^n dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1)(dd^c v)^n
\]

\[
\leq \int_{\{u < v\}} (r - w_1)(dd^c u_j)^n
\]

\[
\leq \int_{\{u < v\}} (r - w_1)(dd^c u)^n.
\]

Letting \(j \to \infty \) we obtain

\[
\frac{1}{n!} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge ... \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1)(dd^c v)^n.
\]

Arguing as in Theorem 4.7 we prove a Xing-type comparison principle for \(\mathcal{E} \). \(\square \)

Theorem 4.9. Let \(u, v \in \mathcal{E} \) and \(1 \leq k \leq n \) be such that \(\lim_{z \to \partial \Omega} \left[u(z) - v(z) \right] \geq 0 \). Then

\[
\frac{1}{k!} \int_{\{u < v\}} (v - u)^k dd^c w_1 \wedge ... \wedge dd^c w_n
\]

\[
+ \int_{\{u < v\}} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n
\]

\[
\leq \int_{\{u < v\} \cup \{u = v = -\infty\}} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n
\]

for all \(w_j \in PSH(\Omega) \), \(0 \leq w_j \leq 1 \), \(j = 1, ..., k \), \(w_{k+1}, ..., w_n \in \mathcal{E} \) and all \(r \geq 1 \).
Proof. Let $\epsilon > 0$. We set $\tilde{v} = \max(u, v - \epsilon)$. By b) in Proposition 3.1 we have
\[
\frac{1}{k!} \int_{\Omega} (\tilde{v} - u)^k dd^cw_1 \wedge ... \wedge dd^cw_n + \int_{\Omega} (r - w_1)(dd^c\tilde{v})^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \leq \int_{\Omega} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]
Since $\{u < \tilde{v}\} = \{u < v - \epsilon\}$ and using Theorem 4.1 we have
\[
\frac{1}{k!} \int_{\{u < v - \epsilon\}} (v - \epsilon - u)^k dd^cw_1 \wedge ... \wedge dd^cw_n + \int_{\{u < v - \epsilon\}} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \leq \int_{\{u < v - \epsilon\}} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]
Letting $\epsilon \downarrow 0$ we obtain
\[
\frac{1}{k!} \int_{\{u < v\}} (v - u)^k dd^cw_1 \wedge ... \wedge dd^cw_n + \int_{\{u < v\}} (r - w_1)(dd^c v)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n \leq \int_{\{u < v\} \cup \{u = v = -\infty\}} (r - w_1)(dd^c u)^k \wedge dd^c w_{k+1} \wedge ... \wedge dd^c w_n.
\]
\[\square\]

ACKNOWLEDGMENT
We are grateful to Professor Urban Cegrell for useful discussions that helped to improve the paper. We are grateful to Per Åhag for fruitful comments. The authors are also indebted to the referee for his useful comments. This work was supported by the National Research Program for Natural Sciences, Vietnam.

REFERENCES

Department of Mathematics, Hanoi University of Education, Dai hoc Su Pham Hanoi, Cau Giay, Hanoi, Vietnam

Department of Mathematics, Hanoi University of Education, Dai hoc Su Pham Hanoi, Cau Giay, Hanoi, Vietnam

E-mail address: phhiep_vn@yahoo.com