Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Virtual Yang-Baxter cocycle invariants

Authors: Jose Ceniceros and Sam Nelson
Journal: Trans. Amer. Math. Soc. 361 (2009), 5263-5283
MSC (2000): Primary 57M27, 18G60
Published electronically: April 8, 2009
MathSciNet review: 2515811
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the Yang-Baxter cocycle invariants for virtual knots by augmenting Yang-Baxter 2-cocycles with cocycles from a cohomology theory associated to a virtual biquandle structure. These invariants coincide with the classical Yang-Baxter cocycle invariants for classical knots but provide extra information about virtual knots and links. In particular, they provide a method for detecting non-classicality of virtual knots and links.

References [Enhancements On Off] (What's this?)

  • 1. N. Andruskiewitsch and M. Graña. From racks to pointed Hopf algebras. Adv. Math. 178 (2003) 177-243. MR 1994219 (2004i:16046)
  • 2. J. S. Carter, A. S. Crans, M. Elhamdadi and M. Saito. Cohomology of Categorical Self-Distributivity. arXiv:math/0607417
  • 3. J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito. Quandle cohomology and state-sum invariants of knotted curves and surfaces. Trans. Amer. Math. Soc. 355 (2003) 3947-3989. MR 1990571 (2005b:57048)
  • 4. J. S. Carter, M. Elhamdadi, and M. Saito. Twisted quandle homology theory and cocycle knot invariants. Algebr. Geom. Topol. 2 (2002) 95-135. MR 1885217 (2003a:57019)
  • 5. J. S. Carter, M. Elhamdadi and M. Saito. Homology Theory for the Set-Theoretic Yang-Baxter Equation and Knot Invariants from Generalizations of Quandles. MR 2128041 (2005k:57009)
  • 6. J. S. Carter and M. Saito. Set-Theoretic Yang-Baxter Solutions via Fox Calculus. J. Knot Theory Ramifications 15 (2006) 949-956. MR 2275090
  • 7. C. Creel and S. Nelson, Symbolic computation with finite biquandles. J. Symbolic Comput. 42 (2007) 992-1000. MR 2361675
  • 8. R. Fenn, M. Jordan-Santana and L. Kauffman. Biquandles and virtual links. Topology Appl. 145 (2004) 157-175. MR 2100870 (2005h:57015)
  • 9. D. Hrencecin and L.H. Kauffman. Biquandles for virtual knots. J. Knot Theory Ramifications 16 (2007) 1361-1382. MR 2384830
  • 10. N. Jackson. Extensions of racks and quandles. Homology, Homotopy Appl. 7 (2005) 151-167. MR 2155522 (2006f:18006)
  • 11. N. Kamada and S. Kamada. Abstract link diagrams and virtual knots. J. Knot Theory Ramifications 9 (2000) 93-106. MR 1749502 (2001h:57007)
  • 12. L. Kauffman. Virtual Knot Theory. European J. Combin. 20 (1999) 663-690. MR 1721925 (2000i:57011)
  • 13. L. H. Kauffman and D. Radford. Bi-oriented quantum algebras, and a generalized Alexander polynomial for virtual links. Contemp. Math. 318 (2003) 113-140. MR 1973514 (2004c:57013)
  • 14. L. H. Kauffman and V. O. Manturov. Virtual biquandles. Fundam. Math. 188 (2005) 103-146. MR 2191942 (2006k:57015)
  • 15. S. Nelson and J. Rische. On Bilinear Biquandles. Colloq. Math. 112 (2008), 279-289.
  • 16. S. Nelson and J. Vo. Matrices and Finite Biquandles. Homology, Homotopy Appl. 8 (2006) 51-73. MR 2246021 (2007j:57009)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M27, 18G60

Retrieve articles in all journals with MSC (2000): 57M27, 18G60

Additional Information

Jose Ceniceros
Affiliation: Department of Mathematics, Whittier College, 13406 Philadelphia, P.O. Box 634, Whittier, California 90608-0634

Sam Nelson
Affiliation: Department of Mathematics, Claremont McKenna College, 850 Columbia Avenue, Claremont, California 91711

Received by editor(s): September 6, 2007
Published electronically: April 8, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society