Some local-global non-vanishing results for theta lifts from orthogonal groups

Author:
Shuichiro Takeda

Journal:
Trans. Amer. Math. Soc. **361** (2009), 5575-5599

MSC (2000):
Primary 11F27

Published electronically:
April 10, 2009

MathSciNet review:
2515824

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We, first, improve a theorem of B. Roberts which characterizes non-vanishing of a global theta lift from to in terms of non-vanishing of local theta lifts. In particular, we will remove all the Archimedean conditions imposed upon his theorem. Secondly, following Roberts, we will apply our theorem to theta lifting of low rank similitude groups. Namely we characterize the non-vanishing condition of a global theta lift from to in our improved setting. Also we consider non-vanishing conditions of a global theta lift from to and explicitly compute the lift when it exists.

**[A]**Jeffrey Adams and Dan Barbasch,*Reductive dual pair correspondence for complex groups*, J. Funct. Anal.**132**(1995), no. 1, 1–42. MR**1346217**, 10.1006/jfan.1995.1099**[AP]**Jeffrey D. Adler and Dipendra Prasad,*On certain multiplicity one theorems*, Israel J. Math.**153**(2006), 221–245. MR**2254643**, 10.1007/BF02771784**[BS]**Siegfried Böcherer and Rainer Schulze-Pillot,*Siegel modular forms and theta series attached to quaternion algebras*, Nagoya Math. J.**121**(1991), 35–96. MR**1096467****[C]**W. Casselman,*Canonical extensions of Harish-Chandra modules to representations of 𝐺*, Canad. J. Math.**41**(1989), no. 3, 385–438. MR**1013462**, 10.4153/CJM-1989-019-5**[Co]**James W. Cogdell,*Lectures on 𝐿-functions, converse theorems, and functoriality for 𝐺𝐿_{𝑛}*, Lectures on automorphic 𝐿-functions, Fields Inst. Monogr., vol. 20, Amer. Math. Soc., Providence, RI, 2004, pp. 1–96. MR**2071506****[F1]**Yuval Z. Flicker,*Twisted tensors and Euler products*, Bull. Soc. Math. France**116**(1988), no. 3, 295–313 (English, with French summary). MR**984899****[F2]**Yuval Z. Flicker,*On zeroes of the twisted tensor 𝐿-function*, Math. Ann.**297**(1993), no. 2, 199–219. MR**1241802**, 10.1007/BF01459497**[FZ]**Yuval Z. Flicker and Dmitrii Zinoviev,*On poles of twisted tensor 𝐿-functions*, Proc. Japan Acad. Ser. A Math. Sci.**71**(1995), no. 6, 114–116. MR**1344660****[HK]**Michael Harris and Stephen S. Kudla,*Arithmetic automorphic forms for the nonholomorphic discrete series of 𝐺𝑆𝑝(2)*, Duke Math. J.**66**(1992), no. 1, 59–121. MR**1159432**, 10.1215/S0012-7094-92-06603-8**[HST]**Michael Harris, David Soudry, and Richard Taylor,*𝑙-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to 𝐺𝑆𝑝₄(𝑄)*, Invent. Math.**112**(1993), no. 2, 377–411. MR**1213108**, 10.1007/BF01232440**[HPS]**Roger Howe and I. I. Piatetski-Shapiro,*Some examples of automorphic forms on 𝑆𝑝₄*, Duke Math. J.**50**(1983), no. 1, 55–106. MR**700131****[I]**Tamotsu Ikeda,*On the location of poles of the triple 𝐿-functions*, Compositio Math.**83**(1992), no. 2, 187–237. MR**1174424****[J1]**Hervé Jacquet,*Principal 𝐿-functions of the linear group*, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 63–86. MR**546609****[J2]**H. Jacquet, : Private communication.**[KS]**Henry H. Kim and Freydoon Shahidi,*Cuspidality of symmetric powers with applications*, Duke Math. J.**112**(2002), no. 1, 177–197. MR**1890650**, 10.1215/S0012-9074-02-11215-0**[K]**Anthony W. Knapp,*Representation theory of semisimple groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001. An overview based on examples; Reprint of the 1986 original. MR**1880691****[Kd1]**Stephen S. Kudla,*On the local theta-correspondence*, Invent. Math.**83**(1986), no. 2, 229–255. MR**818351**, 10.1007/BF01388961**[Kd2]**S. Kudla, Notes on the Local Theta Correspondence, unpublished notes, available online.**[KR1]**Stephen S. Kudla and Stephen Rallis,*Poles of Eisenstein series and 𝐿-functions*, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 81–110. MR**1159110****[KR2]**Stephen S. Kudla and Stephen Rallis,*A regularized Siegel-Weil formula: the first term identity*, Ann. of Math. (2)**140**(1994), no. 1, 1–80. MR**1289491**, 10.2307/2118540**[M]**Daniel A. Marcus,*Number fields*, Springer-Verlag, New York-Heidelberg, 1977. Universitext. MR**0457396****[P]**Annegret Paul,*On the Howe correspondence for symplectic-orthogonal dual pairs*, J. Funct. Anal.**228**(2005), no. 2, 270–310. MR**2175409**, 10.1016/j.jfa.2005.03.015**[PSR]**I. I. Piatetski-Shapiro and S. Rallis,*-functions for classical groups*, in Lecture Notes in Math.**1254**, Springer-Verlag, New York, pp. 1-52.**[PSP]**Dipendra Prasad and Rainer Schulze-Pillot,*Generalised form of a conjecture of Jacquet and a local consequence*, J. Reine Angew. Math.**616**(2008), 219–236. MR**2369492**, 10.1515/CRELLE.2008.023**[R1]**Brooks Roberts,*The theta correspondence for similitudes*, Israel J. Math.**94**(1996), 285–317. MR**1394579**, 10.1007/BF02762709**[R2]**Brooks Roberts,*Tempered representations and the theta correspondence*, Canad. J. Math.**50**(1998), no. 5, 1105–1118. MR**1650930**, 10.4153/CJM-1998-053-6**[R3]**Brooks Roberts,*The non-Archimedean theta correspondence for 𝐺𝑆𝑝(2) and 𝐺𝑂(4)*, Trans. Amer. Math. Soc.**351**(1999), no. 2, 781–811. MR**1458334**, 10.1090/S0002-9947-99-02126-1**[R4]**Brooks Roberts,*Nonvanishing of global theta lifts from orthogonal groups*, J. Ramanujan Math. Soc.**14**(1999), no. 2, 131–194. MR**1727710****[R5]**Brooks Roberts,*Global 𝐿-packets for 𝐺𝑆𝑝(2) and theta lifts*, Doc. Math.**6**(2001), 247–314 (electronic). MR**1871665**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11F27

Retrieve articles in all journals with MSC (2000): 11F27

Additional Information

**Shuichiro Takeda**

Affiliation:
Department of Mathematics, University of Pennsylvania, 209 South 33rd St., Philadelphia, Pennsylvania 19104-6395

Address at time of publication:
Department of Mathematics, Purdue University, 150 N. University, West Lafayette, Indiana 47907

Email:
stakeda@math.upenn.edu, stakeda@math.purdue.edu

DOI:
https://doi.org/10.1090/S0002-9947-09-04787-4

Keywords:
Automorphic representation,
theta correspondence,
theta lifting

Received by editor(s):
July 31, 2006

Received by editor(s) in revised form:
January 22, 2008

Published electronically:
April 10, 2009

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.