Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Varieties with definable factor congruences


Authors: Pedro Sánchez Terraf and Diego J. Vaggione
Journal: Trans. Amer. Math. Soc. 361 (2009), 5061-5088
MSC (2000): Primary 08B05; Secondary 03C40
DOI: https://doi.org/10.1090/S0002-9947-09-04921-6
Published electronically: May 18, 2009
MathSciNet review: 2515803
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study direct product representations of algebras in varieties. We collect several conditions expressing that these representations are definable in a first-order-logic sense, among them the concept of Definable Factor Congruences (DFC). The main results are that DFC is a Mal'cev property and that it is equivalent to all other conditions formulated; in particular we prove that $ \mathcal{V}$ has DFC if and only if $ \mathcal{V}$ has $ \vec{0}$ & $ \vec{1}$ and Boolean Factor Congruences. We also obtain an explicit first-order definition $ \Phi$ of the kernel of the canonical projections via the terms associated to the Mal'cev condition for DFC, in such a manner that it is preserved by taking direct products and direct factors. The main tool is the use of central elements, which are a generalization of both central idempotent elements in rings with identity and neutral complemented elements in a bounded lattice.


References [Enhancements On Off] (What's this?)

  • 1. D. BIGELOW AND S. BURRIS, Boolean algebras of factor congruences, Acta Sci. Math. (Szeged) 54 (1990), 11-20. MR 1073415 (91j:08012)
  • 2. S. BURRIS, Boolean products of indecomposables, Algebra Universalis 48 no. 2 (2002), 497-499. MR 1967096
  • 3. C. C. CHANG, B. JóNSSON AND A. TARSKI, Refinement properties for relational structures. Fund. Math. 54 (1964), 249-281. MR 0172811 (30:3029)
  • 4. S. COMER, Representations by algebras of sections of Boolean Spaces, Pacific J. Math. 38 (1971), 29-38. MR 0304277 (46:3412)
  • 5. B. A. DAVEY, Sheaf spaces and sheaves of universal algebras, Math Z., 134 (1973), 275-290. MR 0330006 (48:8345)
  • 6. R. FREESE AND E. KISS, An algebra calculator program. Website: http://www.math.hawaii. edu/˜ralph/software/uaprog/
  • 7. B. JóNSSON AND A. TARSKI, Direct Decompositions of Finite Algebraic Systems. University of Notre Dame, South Bend, IN (1947). MR 0020543 (8:560b)
  • 8. R. MCKENZIE, G. MCNULTY AND W. TAYLOR, Algebras, Lattices, Varieties, Volume 1, The Wadsworth & Brooks/Cole Math. Series, Monterey, California (1987).
  • 9. P. KRAUSS AND D. CLARK, Global subdirect products, Mem. Amer. Math. Soc. 210 (1979). MR 512475 (80b:08001)
  • 10. R. S. PIERCE, Modules over commutative regular rings, Mem. Amer. Math. Soc. 70 (1967). MR 0217056 (36:151)
  • 11. A. TARSKI, Cardinal Algebras. Oxford Univ. Press, New York (1949). MR 0029954 (10:686f)
  • 12. D. VAGGIONE, Central elements in varieties with the Fraser-Horn property, Advances in Mathematics 148 (1999), 193-202. MR 1736957 (2001b:08005)
  • 13. D. VAGGIONE AND P. SáNCHEZ TERRAF, Compact factor congruences imply Boolean factor congruences, Algebra Universalis 51 (2004) 207-213. MR 2099798 (2005f:08001)
  • 14. R. WILLARD, Varieties Having Boolean Factor Congruences. J. Algebra, 132 (1990), 130-153. MR 1060837 (91i:08010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 08B05, 03C40

Retrieve articles in all journals with MSC (2000): 08B05, 03C40


Additional Information

Pedro Sánchez Terraf
Affiliation: CIEM — Facultad de Matemática, Astronomía y Física (Fa.M.A.F.), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Email: sterraf@famaf.unc.edu.ar

Diego J. Vaggione
Affiliation: CIEM — Facultad de Matemática, Astronomía y Física (Fa.M.A.F.), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Email: vaggione@mate.uncor.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04921-6
Received by editor(s): December 15, 2006
Published electronically: May 18, 2009
Additional Notes: This work was supported by CONICET and SECYT-UNC
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society