Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Local well-posedness for the modified KdV equation in almost critical $ \widehat{H^r_s}$-spaces

Authors: Axel Grünrock and Luis Vega
Journal: Trans. Amer. Math. Soc. 361 (2009), 5681-5694
MSC (2000): Primary 35Q55
Published electronically: June 8, 2009
MathSciNet review: 2529909
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Cauchy problem for the modified KdV equation

$\displaystyle u_t + u_{xxx} + (u^3)_x = 0, \hspace{2cm} u(0)=u_0$

for data $ u_0$ in the space $ \widehat{H_s^r}$ defined by the norm

$\displaystyle \Vert u_0\Vert _{\widehat{H_s^r}} := \Vert\langle \xi \rangle ^s\widehat{u_0}\Vert _{L^{r'}_{\xi}}.$

Local well-posedness of this problem is established in the parameter range $ 2 \ge r >1$, $ s \ge \frac{1}{2} - \frac{1}{2r}$, so the case $ (s,r)=(0,1)$, which is critical in view of scaling considerations, is almost reached. To show this result, we use an appropriate variant of the Fourier restriction norm method as well as bi- and trilinear estimates for solutions of the Airy equation.

References [Enhancements On Off] (What's this?)

  • [B93] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, GAFA 3 (1993), 107-156 and 209-262. MR 1215780 (95d:35160b)
  • [CVV01] Cazenave, T., Vega, L., Vilela, M. C.: A note on the nonlinear Schrödinger equation in weak $ L^p$ spaces, Communications in contemporary Mathematics, Vol. 3, No. 1 (2001), 153-162. MR 1820017 (2002g:35192)
  • [CCT03] Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235-1293. MR 2018661 (2005d:35223)
  • [F70] Fefferman, C.: Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • [FLP99] Fonseca, G., Linares, F., Ponce, G.: Global well-posedness for the modified Korteweg-de Vries equation, Comm. PDE, 24 (1999), 683-705. MR 1683054 (2000a:35210)
  • [GTV97] Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy Problem for the Zakharov System, J. of Functional Analysis 151 (1997), 384-436. MR 1491547 (2000c:35220)
  • [G04] Grünrock, A.: An improved local well-posedness result for the modified KdV equation, IMRN 2004, No. 61, 3287-3308. MR 2096258 (2006f:35242)
  • [G05] Grünrock, A.: Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, IMRN 2005, No. 41, 2525-2558. MR 2181058 (2007b:35298)
  • [KPV91] Kenig, C., Ponce, G., Vega, L.: Oscillatory Integrals and Regularity of dispersive equations, Indiana University Math. J., 40, 1991, 33-69. MR 1101221 (92d:35081)
  • [KPV93] Kenig, C., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, CPAM 46 (1993), 527-620. MR 1211741 (94h:35229)
  • [KPV01] Kenig, C., Ponce, G., Vega, L.: On the illposedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617-633. MR 1813239 (2002c:35265)
  • [PV05] Perelman, G., Vega, L.: Self-similar planar curves related to modified Korteweg-de Vries equation, preprint. MR 2309566 (2008a:35245)
  • [S87] Sjölin, P.: Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699-715. MR 904948 (88j:35026)
  • [VV01] Vargas, A., Vega, L.: Global wellposedness for $ 1D$ nonlinear Schrödinger equation for data with an infinite $ L^2$ norm, J. Math. Pures Appl. 80, 10(2001), 1029-1044. MR 1876762 (2002j:35290)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q55

Retrieve articles in all journals with MSC (2000): 35Q55

Additional Information

Axel Grünrock
Affiliation: Fachbereich C: Mathematik/Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
Address at time of publication: Mathemathisches Institut, Universitat Bonn, Beringstrasse 4, D-53115 Bonn, Germany

Luis Vega
Affiliation: Departamento de Matematicas, Universidad del Pais Vasco, 48080 Bilbao, Spain

Received by editor(s): March 2, 2007
Published electronically: June 8, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society