Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space

Authors: Isabel Fernández and Pablo Mira
Journal: Trans. Amer. Math. Soc. 361 (2009), 5737-5752
MSC (2000): Primary 53A10
Published electronically: June 22, 2009
MathSciNet review: 2529912
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the entire minimal vertical graphs in the Heisenberg group $ {\rm Nil_3}$ endowed with a Riemannian left-invariant metric. This classification, which provides a solution to the Bernstein problem in $ {\rm Nil}_3$, is given in terms of the Abresch-Rosenberg holomorphic differential for minimal surfaces in $ {\rm Nil}_3$.

References [Enhancements On Off] (What's this?)

  • [AbRo1] U. Abresch, H. Rosenberg, A Hopf differential for constant mean curvature surfaces in $ \mathbb{S}^2\times\mathbb{R}$ and $ \mathbb{H}^2\times \mathbb{R}$, Acta Math. 193 (2004), 141-174. MR 2134864 (2006h:53003)
  • [AbRo2] U. Abresch, H. Rosenberg, Generalized Hopf differentials, Mat. Contemp. 28 (2005), 1-28. MR 2195187 (2006h:53004)
  • [ADR] L.J. Alıas, M. Dajczer, H. Rosenberg, The Dirichlet problem for CMC surfaces in Heisenberg space, Calc. Var. Partial Diff. Equations, 30 (2007), 513-522. MR 2332426
  • [BSV] V. Barone-Adesi, F. Serra-Cassano, D. Vittone, The Bernstein problem for intrinsic graphs in the Heisenberg group and calibrations, Calc. Var. Partial Diff. Equations, 30 (2007), 17-49. MR 2333095
  • [Bry] R.L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque, 154-155 (1987), 321-347. MR 955072
  • [ChYa] S.Y. Cheng, S.T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2) 104 (1976), 407-419. MR 0431061 (55:4063)
  • [CHMY] J.H. Cheng, J.F Hwang, A. Malchiodi, P. Yang, Minimal surfaces in pseudohermitian geometry, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005), 129-177. MR 2165405 (2006f:53008)
  • [CoRo] P. Collin, H. Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs, preprint, 2007.
  • [Dan1] B. Daniel, Isometric immersions into $ 3$-dimensional homogeneous manifolds, Comment. Math. Helv. 82 (2007), 87-131. MR 2296059 (2008a:53058)
  • [Dan2] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, preprint, 2006.
  • [DaHa] B. Daniel, L. Hauswirth, Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg space, preprint, 2007.
  • [FeMi1] I. Fernández, P. Mira, Harmonic maps and constant mean curvature surfaces in $ \mathbb{H}^2\times \mathbb{R}$, Amer. J. Math. 129 (2007), 1145-1181. MR 2343386
  • [FeMi2] I. Fernández, P. Mira, A characterization of constant mean curvature surfaces in homogeneous $ 3$-manifolds, Diff. Geom. Appl., 25 (2007), 281-289. MR 2330457
  • [FMP] C. Figueroa, F. Mercuri, R. Pedrosa, Invariant surfaces of the Heisenberg groups, Ann. Mat. Pura Appl. 177 (1999), 173-194. MR 1747630 (2000m:53089)
  • [GaMi] J.A. Gálvez, P. Mira, The Cauchy problem for the Liouville equation and Bryant surfaces, Adv. Math., 195 (2005), 456-490. MR 2146351 (2006i:53003)
  • [GaPa] N. Garofalo, S. Pauls, The Bernstein problem in the Heisenberg group, preprint, 2003.
  • [HRS] L. Hauswirth, H. Rosenberg, J. Spruck, On complete mean curvature $ 1/2$ surfaces in $ \mathbb{H}^2\times\mathbb{R}$, preprint, 2007.
  • [HsHs] W.Y. Hsiang, W.T. Hsiang, On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math. 98 (1989), 39-58. MR 1010154 (90h:53078)
  • [IKOS] J. Inoguchi, T. Kumamoto, N. Ohsugi, Y. Suyama, Differential geometry of curves and surfaces in $ 3$-dimensional homogeneous spaces II, Fukuoka Univ. Sci. Reports 30 (2000), 17-47. MR 1763761 (2001c:53085)
  • [MMP] F. Mercuri, S. Montaldo, P. Piu, A Weierstrass representation formula for minimal surfaces in $ \mathbb{H}_3$ and $ \mathbb{H}^2\times \mathbb{R}$, Acta Math. Sinica, 22 (2006), 1603-1612. MR 2262416 (2007g:53007)
  • [RiRo] M. Ritoré, C. Rosales, Area stationary surfaces in the Heisenberg group $ \mathbb{H}^1$, preprint, 2005.
  • [Sa] R. Sa Earp, Parabolic and hyperbolic screw motion surfaces in $ \mathbb{H}^2\times\mathbb{R}$, to appear in J. Austr. Math. Soc., 2007.
  • [Wan] T.Y. Wan, Constant mean curvature surface harmonic map and universal Teichmuller space, J. Differential Geom. 35 (1992), 643-657. MR 1163452 (94a:58053)
  • [WaAu] T.Y. Wan, T.K. Au, Parabolic constant mean curvature spacelike surfaces, Proc. Amer. Math. Soc. 120 (1994), 559-564. MR 1169052 (94d:53017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53A10

Retrieve articles in all journals with MSC (2000): 53A10

Additional Information

Isabel Fernández
Affiliation: Departamento de Matematica Aplicada I, Universidad de Sevilla, E-41012 Sevilla, Spain

Pablo Mira
Affiliation: Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, E-30203 Cartagena, Murcia, Spain

Keywords: Minimal graphs, Bernstein problem, holomorphic quadratic differential, Heisenberg group
Received by editor(s): May 15, 2007
Published electronically: June 22, 2009
Additional Notes: The first author was partially supported by MEC-FEDER Grant No. MTM2007-64504 and Regional J. Andalucia Grants P06-FQM-01642 and FQM 325
The second author was partially supported by MEC-FEDER, Grant No. MTM2007-65249 and the Programme in Support of Excellence Groups of Murcia, by Fund. Seneca, reference 04540/GERM/OG
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society