Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Poisson structures on affine spaces and flag varieties. II


Authors: K. R. Goodearl and M. Yakimov
Journal: Trans. Amer. Math. Soc. 361 (2009), 5753-5780
MSC (2000): Primary 14M15; Secondary 53D17, 14L30, 17B20, 17B63, 53C35
DOI: https://doi.org/10.1090/S0002-9947-09-04654-6
Published electronically: June 19, 2009
MathSciNet review: 2529913
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The standard Poisson structures on the flag varieties $ G/P$ of a complex reductive algebraic group $ G$ are investigated. It is shown that the orbits of symplectic leaves in $ G/P$ under a fixed maximal torus of $ G$ are smooth irreducible locally closed subvarieties of $ G/P$, isomorphic to intersections of dual Schubert cells in the full flag variety $ G/B$ of $ G$, and their Zariski closures are explicitly computed. Two different proofs of the former result are presented. The first is in the framework of Poisson homogeneous spaces, and the second one uses an idea of weak splittings of surjective Poisson submersions, based on the notion of Poisson-Dirac submanifolds. For a parabolic subgroup $ P$ with abelian unipotent radical (in which case $ G/P$ is a Hermitian symmetric space of compact type), it is shown that all orbits of the standard Levi factor $ L$ of $ P$ on $ G/P$ are complete Poisson subvarieties which are quotients of $ L$, equipped with the standard Poisson structure. Moreover, it is proved that the Poisson structure on $ G/P$ vanishes at all special base points for the $ L$-orbits on $ G/P$ constructed by Richardson, Röhrle, and Steinberg.


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Groupes et algèbres de Lie, Chaps. 4, 5 et 6, Hermann, 1975. MR 0453824 (56:12077)
  • 2. M. Brion and V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651-680. MR 2017071 (2004m:14106)
  • 3. K. A. Brown, K. A. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Advances in Math. 206 (2006), 567-629. MR 2263715 (2007k:14094)
  • 4. R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley-Interscience, Chichester, 1993. MR 1266626 (94k:20020)
  • 5. M. Crainic and R. L. Fernandes, Integrability of Poisson brackets, J. Diff. Geom. 66 (2004), 71-137. MR 2128714 (2006f:53119)
  • 6. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511. MR 782232 (86f:20045)
  • 7. V. G. Drinfeld, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. and Math. Phys. 95 (1993), 524-525. MR 1243249 (94k:58045)
  • 8. P. Foth and J.-H. Lu, A Poisson structure on compact symmetric spaces, Comm. Math. Phys. 251 (2004), 557-566. MR 2102330 (2005g:53156)
  • 9. W. Fulton and J. Harris, Representation Theory, A First Course, Graduate Texts in Math. 129, Springer-Verlag, Berlin, 1991. MR 1153249 (93a:20069)
  • 10. K. R. Goodearl, Prime spectra of quantized coordinate rings, in Interactions Between Ring Theory and Representations of Algebras (Murcia 1998), Lecture Notes in Pure and Appl. Math., 210, Dekker, New York, 2000, pp. 205-237. MR 1759846 (2001b:16052)
  • 11. A. Kamita, Quantum deformations of certain prehomogeneous vector spaces III, Hiroshima Math. J. 30 (2000), 79-115. MR 1753385 (2001a:17021)
  • 12. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • 13. J.-H. Lu and M. Yakimov, Partitions of the wonderful group compactification, Transformation Groups, 12 (2007), no. 4, 695-723. MR 2365441
  • 14. G. Lusztig, Total positivity in partial flag manifolds, Representation Theory 2 (1998), 70-78. MR 1606402 (2000b:20060)
  • 15. I. Muller, H. Rubenthaller, and G. Schiffmann, Structure des espaces prèhomogènes associès á certaines algèbres de Lie graduèes, Math. Ann. 274 (1986), 95-123. MR 834108 (88e:17025)
  • 16. I. M. Musson, Ring theoretic properties of the coordinate rings of quantum symplectic and Euclidean space, in Ring Theory, Proc. Biennial Ohio State-Denison Conf., 1992 (S. K. Jain and S. T. Rizvi, eds.), World Scientific, Singapore, 1993, pp. 248-258. MR 1344235 (96e:16052)
  • 17. M. Noumi, Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Advances in Math. 123 (1996), 16-77. MR 1413836 (98a:33004)
  • 18. N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225. MR 1015339 (90j:17039)
  • 19. R. Richardson, G. Röhrle, and R. Steinberg, Parabolic subgroups with Abelian unipotent radical, Invent. Math. 110 (1992), 649-671. MR 1189494 (93j:20092)
  • 20. K. Rietsch, Closure relations for totally nonnegative cells in $ G/P$, Math. Res. Lett. 13 (2006), 775-786. MR 2280774 (2007j:14073)
  • 21. T. A. Springer, Intersection cohomology of $ B\times B$-orbit closures in group compactifications, with an appendix by W. van der Kallen. Special issue in celebration of Claudio Procesi's 60th birthday, J. Algebra 258 (2002), 71-111. MR 1958898 (2004a:14025)
  • 22. E. Strickland, Classical invariant theory for the quantum symplectic group, Advances in Math. 123 (1996), 78-90. MR 1413837 (98a:17022)
  • 23. M. Takeuchi, On orbits in a compact hermitian symmetric space, Am. J. Math. 90 (1968), 657-680. MR 0245827 (39:7133)
  • 24. J. A. Wolf, Fine structure of Hermitian symmetric spaces, in Symmetric Spaces, Short Courses Presented at Washington University (W. Boothby, G. L. Weiss, eds.), New York, Marcel Dekker, 1972, pp. 271-357. MR 0404716 (53:8516)
  • 25. J. A. Wolf, Classification and Fourier inversion for parabolic subgroups with square integrable nilradical, Mem. Amer. Math. Soc. 225 (1979), 1-166. MR 546511 (81a:22010)
  • 26. P. Xu, Dirac submanifolds and Poisson involutions, Ann. Sci. École Norm. Sup. (4) 36 (2003), 403-430. MR 1977824 (2004e:53125)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14M15, 53D17, 14L30, 17B20, 17B63, 53C35

Retrieve articles in all journals with MSC (2000): 14M15, 53D17, 14L30, 17B20, 17B63, 53C35


Additional Information

K. R. Goodearl
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
Email: goodearl@math.ucsb.edu

M. Yakimov
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
Email: yakimov@math.ucsb.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04654-6
Received by editor(s): June 13, 2007
Published electronically: June 19, 2009
Additional Notes: The research of the first author was partially supported by National Science Foundation grant DMS-0401558.
The research of the second author was partially supported by National Science Foundation grant DMS-0406057 and an Alfred P. Sloan research fellowship.
Dedicated: Dedicated to the memory of our colleague Xu-Dong Liu (1962-2005)
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society