Stringy product on twisted orbifold K-theory for abelian quotients

Authors:
Edward Becerra and Bernardo Uribe

Journal:
Trans. Amer. Math. Soc. **361** (2009), 5781-5803

MSC (2000):
Primary 14N35, 19L47; Secondary 55N15, 55N91

DOI:
https://doi.org/10.1090/S0002-9947-09-04760-6

Published electronically:
June 4, 2009

MathSciNet review:
2529914

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present a model to calculate the stringy product on twisted orbifold K-theory of Adem-Ruan-Zhang for abelian complex orbifolds.

In the first part we consider the non-twisted case on an orbifold presented as the quotient of a manifold acted by a compact abelian Lie group. We give an explicit description of the obstruction bundle, we explain the relation with the product defined by Jarvis-Kaufmann-Kimura and, via a Chern character map, with the Chen-Ruan cohomology, we explicitly calculate the stringy product for a weighted projective orbifold.

In the second part we consider orbifolds presented as the quotient of a manifold acted by a finite abelian group and twistings coming from the group cohomology. We show a decomposition formula for twisted orbifold K-theory that is suited to calculate the stringy product and we use this formula to calculate two examples when the group is .

**[AR03]**A. Adem and Y. Ruan.

Twisted orbifold -theory.*Comm. Math. Phys.*, 237(3):533-556, 2003. MR**1993337 (2004e:19004)****[ARZ]**A. Adem, Y. Ruan, and B. Zhang.

A stringy product on twisted orbifold -theory.

arxiv:math.AT/0605534.**[AS68]**M. F. Atiyah and I. M. Singer.

The index of elliptic operators. III.*Ann. of Math. (2)*, 87:546-604, 1968. MR**0236952 (38:5245)****[AS69]**M. F. Atiyah and G. B. Segal.

Equivariant -theory and completion.*J. Differential Geometry*, 3:1-18, 1969. MR**0259946 (41:4575)****[CH06]**B. Chen and S. Hu.

A deRham model for Chen-Ruan cohomology ring of abelian orbifolds.*Math. Ann.*, 336(1):51-71, 2006. MR**2242619 (2007d:14044)****[CR04]**W. Chen and Y. Ruan.

A new cohomology theory of orbifold.*Comm. Math. Phys.*, 248(1):1-31, 2004. MR**2104605 (2005j:57036)****[Dum]**Ali Nabi Duman.

An example of a twisted fusion algebra.

Preprint.**[JKK07]**Tyler J. Jarvis, Ralph Kaufmann, and Takashi Kimura.

Stringy -theory and the Chern character.*Invent. Math.*, 168(1):23-81, 2007. MR**2285746 (2007i:14059)****[LO01]**W. Lück and B. Oliver.

Chern characters for the equivariant -theory of proper -CW-complexes.

In*Cohomological methods in homotopy theory (Bellaterra, 1998)*, volume 196 of*Progr. Math.*, pages 217-247. Birkhäuser, Basel, 2001. MR**1851256 (2002m:55016)****[LU02]**E. Lupercio and B. Uribe.

Loop groupoids, gerbes, and twisted sectors on orbifolds.

In*Orbifolds in mathematics and physics (Madison, WI, 2001)*, volume 310 of*Contemp. Math.*, pages 163-184. Amer. Math. Soc., Providence, RI, 2002. MR**1950946 (2004c:58043)****[Moe02]**I. Moerdijk.

Orbifolds as groupoids: An introduction.

In*Orbifolds in mathematics and physics (Madison, WI, 2001)*, volume 310 of*Contemp. Math.*, pages 205-222. Amer. Math. Soc., Providence, RI, 2002. MR**1950948 (2004c:22003)****[Qui71]**D. Quillen.

Elementary proofs of some results of cobordism theory using Steenrod operations.*Advances in Math.*, 7:29-56 (1971), 1971. MR**0290382 (44:7566)****[Seg68]**G. Segal.

Equivariant -theory.*Inst. Hautes Études Sci. Publ. Math.*, (34):129-151, 1968. MR**0234452 (38:2769)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14N35,
19L47,
55N15,
55N91

Retrieve articles in all journals with MSC (2000): 14N35, 19L47, 55N15, 55N91

Additional Information

**Edward Becerra**

Affiliation:
Departamento de Matemáticas, Universidad de los Andes, Carrera 1 N. 18A - 10, Bogotá, Colombia

Email:
es.becerra75@uniandes.edu.co

**Bernardo Uribe**

Affiliation:
Departamento de Matemáticas, Universidad de los Andes, Carrera 1 N. 18A - 10, Bogotá, Colombia

Email:
buribe@uniandes.edu.co

DOI:
https://doi.org/10.1090/S0002-9947-09-04760-6

Keywords:
Stringy product,
twisted orbifold K-theory,
Chen-Ruan cohomology,
inverse transgression map

Received by editor(s):
June 27, 2007

Published electronically:
June 4, 2009

Additional Notes:
Both authors acknowledge the support of COLCIENCIAS through the grant 120440520246 and of CONACYT-COLCIENCIAS throught contract number 376-2007

The second author was partially supported by the “Fondo de apoyo a investigadores jovenes” from Universidad de los Andes

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.