Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational approximations for values of derivatives of the Gamma function


Author: Tanguy Rivoal
Journal: Trans. Amer. Math. Soc. 361 (2009), 6115-6149
MSC (2000): Primary 11J13; Secondary 33C45, 33F10, 39A11
DOI: https://doi.org/10.1090/S0002-9947-09-04905-8
Published electronically: June 25, 2009
MathSciNet review: 2529926
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The arithmetic nature of Euler's constant $ \gamma$ is still unknown and even getting good rational approximations to it is difficult. Recently, Aptekarev managed to find a third order linear recurrence with polynomial coefficients which admits two rational solutions $ a_n$ and $ b_n$ such that $ a_n/b_n$ converges sub-exponentially to $ \gamma$, viewed as $ -\Gamma'(1)$, where $ \Gamma$ is the usual Gamma function. Although this is not yet enough to prove that $ \gamma\not\in\mathbb{Q}$, it is a major step in this direction.

In this paper, we present a different, but related, approach based on simultaneous Padé approximants to Euler's functions, from which we construct and study a new third order recurrence that produces a sequence in $ \mathbb{Q}(z)$ whose height grows like the factorial and that converges sub-exponentially to $ \log(z)+\gamma$ for any complex number $ z\in\mathbb{C}\setminus (-\infty,0]$, where $ \log$ is defined by its principal branch. We also show how our approach yields in theory rational approximations of numbers related to $ \Gamma^{(s)}(1)$ for any integer $ s\ge 1$. In particular, we construct a sixth order recurrence which provides simultaneous rational approximations (of factorial height) converging sub-exponentially to the numbers $ \gamma$ and $ \Gamma''(1)-2\Gamma'(1)^2=\zeta(2)-\gamma^2.$


References [Enhancements On Off] (What's this?)

  • 1. K. Alladi and M. Robinson, Legendre polynomials and irrationality, J. Reine Angew. Math. 318 (1980), 137-155. MR 579389 (81i:10036)
  • 2. Y. André, Arithmetic Gevrey series and transcendence. A survey, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 1-10. MR 2018997 (2004m:11115)
  • 3. G. E. Andrews, R. A. Askey and R. Roy, Special Functions, The Encyclopedia of Mathematics and Its Applications, vol. 71, (G.-C. Rota, ed.), Cambridge University Press, Cambridge (1999). MR 1688958 (2000g:33001)
  • 4. R. Apéry, Irrationalité de $ \zeta(2)$ et $ \zeta(3)$, Astérisque 61 (1979), 11-13.
  • 5. A. I. Aptekarev, A. Branquinho and W. van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), 3887-3914. MR 1990569 (2004g:33014)
  • 6. A. I. Aptekarev (editor), Rational approximants for Euler constant and recurrence relations, Sovremennye Problemy Matematiki (``Current Problems in Mathematics''), vol. 9, MIAN (Steklov Institute), Moscow, 2007.
  • 7. G. D. Birkhoff and W. J. Trjitzinsky, Analytic theory of singular difference equations, Acta Math. 60 (1932), 1-89. MR 1555364
  • 8. H. Cohen, Accélération de la convergence de certaines récurrences linéaires, Sémin. Théor. Nombres 1980-1981, Exposé no.16, 2 pp. (1981).
  • 9. C. Elsner, On a sequence transformation with integral coefficients for Euler's constant, Proc. Amer. Math. Soc. 123 (1995), no. 3, 1537-1541. MR 1233969 (95f:11111)
  • 10. S. Fischler and T. Rivoal, Un exposant de densité en approximation rationnelle, Internat. Math. Res. Notices 2006 (2006), Article ID 95418, 48 pages. MR 2272100 (2007h:11079)
  • 11. G. H. Hardy, Divergent series, Second edition, Chelsea Publishing Company, 1991. MR 1188874 (93g:01100)
  • 12. M. Hata, Rational approximations to $ \pi$ and some other numbers, Acta. Arith. 63 (1993), 335-349. MR 1218461 (94e:11082)
  • 13. M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, 771-808. MR 1852188 (2002i:11002)
  • 14. C. Krattenthaler and T. Rivoal, How can we escape Thomae's relations?, J. Math. Soc. Japan 58 (2006), no. 1, 183-210. MR 2204570 (2007b:11106)
  • 15. J.-P. Ramis, Séries divergentes et théories asymptotiques, Bull. Soc. Math. France 121 (1993), Panoramas et Synthèses, 74 pp. MR 1272100 (95h:34074)
  • 16. T. Rivoal, Simultaneous polynomial approximations of the Lerch function, Preprint (2007), 15 pages, to appear in Canadian J. Math.
  • 17. T. Rivoal and W. Zudilin, Diophantine properties of numbers related to Catalan's constant, Math. Annalen 326 (2003), no. 4, 705-721. MR 2003449 (2004k:11119)
  • 18. A. Tefara, MultInt, a Maple Package for Multiple Integration by the WZ Method, J. Symb. Comp. 34 (2002), no. 5, 329-353. MR 1937465 (2004b:33030) The package Multint is available here: http://faculty.gvsu.edu/teferaa/html/MultInt.mpl.
  • 19. M. Waldschmidt, Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux 12 (2000), no. 2, 581-595. MR 1823204 (2002a:11106)
  • 20. H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and ``$ q$'') multisum/integral identities, Invent. Math. 108 (1992), no. 3, 575-633. MR 1163239 (93k:33010)
  • 21. J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985), no. 1, 162-176. MR 808671 (87b:05015)
  • 22. D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), no. 3, 321-368. MR 1090884 (92b:33014)
  • 23. W. Zudilin, On third-order Apéry-like recursion for $ \zeta(5)$, Mat. Zametki 72 (2002), no. 5, 796-800 (Russian); English transl., Math. Notes 72 (2002), no. 5-6, 733-737. MR 1963141 (2004d:11061)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11J13, 33C45, 33F10, 39A11

Retrieve articles in all journals with MSC (2000): 11J13, 33C45, 33F10, 39A11


Additional Information

Tanguy Rivoal
Affiliation: Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères cedex, France

DOI: https://doi.org/10.1090/S0002-9947-09-04905-8
Keywords: Euler's constant, rational approximations, Pad\'e approximants, linear recurrences, Birkhoff--Trjitzinsky theory
Received by editor(s): February 28, 2008
Published electronically: June 25, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society