Polynomial identities in nil-algebras

Authors:
Elena V. Aladova and Alexei N. Krasilnikov

Journal:
Trans. Amer. Math. Soc. **361** (2009), 5629-5646

MSC (2000):
Primary 16R10

Published electronically:
June 23, 2009

MathSciNet review:
2529907

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that in associative algebras over a field of characteristic the polynomial identity is not Specht. To prove this we construct a non-finitely based system of polynomial identities which contains the identity . We also give an example of a non-Specht polynomial identity of degree in unital associative -algebras.

**1.**E. V. Aladova,*A non-finitely basable variety of nilalgebras over a field of characteristic 3*, Algebra and linear optimization (Russian) (Ekaterinburg, 2002) Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2002, pp. 5–11 (Russian). MR**1847556****2.**Yu. A. Bahturin,*Identical relations in Lie algebras*, VNU Science Press, b.v., Utrecht, 1987. Translated from the Russian by Bahturin. MR**886063****3.**I. R. Shafarevich (ed.),*Algebra. II*, Encyclopaedia of Mathematical Sciences, vol. 18, Springer-Verlag, Berlin, 1991. Noncommutative rings. Identities; A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988 [ MR0944534 (88k:00010)]; Translation by E. Behr; Translation edited by A. I. Kostrikin and I. R. Shafarevich. MR**1121267****4.**A. Ya. Belov,*On non-Specht varieties*, Fundam. Prikl. Mat.**5**(1999), no. 1, 47–66 (Russian, with English and Russian summaries). MR**1799544****5.**A. Ya. Belov,*Counterexamples to the Specht problem*, Mat. Sb.**191**(2000), no. 3, 13–24 (Russian, with Russian summary); English transl., Sb. Math.**191**(2000), no. 3-4, 329–340. MR**1773251**, 10.1070/SM2000v191n03ABEH000460**6.**I. R. Shafarevich (ed.),*Algebra. II*, Encyclopaedia of Mathematical Sciences, vol. 18, Springer-Verlag, Berlin, 1991. Noncommutative rings. Identities; A translation of Sovremennye problemy matematiki. Fundamentalnye napravleniya, Tom 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988 [ MR0944534 (88k:00010)]; Translation by E. Behr; Translation edited by A. I. Kostrikin and I. R. Shafarevich. MR**1121267****7.**Vesselin Drensky,*Free algebras and PI-algebras*, Springer-Verlag Singapore, Singapore, 2000. Graduate course in algebra. MR**1712064****8.**Edward Formanek,*The Nagata-Higman theorem*, Acta Appl. Math.**21**(1990), no. 1-2, 185–192. MR**1085778**, 10.1007/BF00053297**9.**A. V. Grishin,*Examples of 𝑇-spaces and 𝑇-ideals of characteristic 2 without the finite basis property*, Fundam. Prikl. Mat.**5**(1999), no. 1, 101–118 (Russian, with English and Russian summaries). MR**1799541****10.**A. V. Grishin,*On non-Spechtianness of the variety of associative rings that satisfy the identity 𝑥³²=0*, Electron. Res. Announc. Amer. Math. Soc.**6**(2000), 50–51. MR**1777855**, 10.1090/S1079-6762-00-00080-9**11.**C. K. Gupta and Alexei N. Krasilnikov,*A non-finitely based system of polynomial identities which contains the identity 𝑥⁶=0*, Q. J. Math.**53**(2002), no. 2, 173–183. MR**1909509**, 10.1093/qjmath/53.2.173**12.**Graham Higman,*On a conjecture of Nagata*, Proc. Cambridge Philos. Soc.**52**(1956), 1–4. MR**0073581****13.**Alexei Kanel-Belov and Louis Halle Rowen,*Computational aspects of polynomial identities*, Research Notes in Mathematics, vol. 9, A K Peters, Ltd., Wellesley, MA, 2005. MR**2124127****14.**A. R. Kemer,*Finite basability of identities of associative algebras*, Algebra i Logika**26**(1987), no. 5, 597–641, 650 (Russian). MR**985840****15.**Masayoshi Nagata,*On the nilpotency of nil-algebras*, J. Math. Soc. Japan**4**(1952), 296–301. MR**0053088****16.**Louis H. Rowen,*Ring theory*, Student edition, Academic Press, Inc., Boston, MA, 1991. MR**1095047****17.**V. V. Shchigolev,*Examples of infinitely based 𝑇-ideals*, Fundam. Prikl. Mat.**5**(1999), no. 1, 307–312 (Russian, with English and Russian summaries). MR**1799533****18.**V. V. Shchigolev,*Examples of infinitely basable 𝑇-spaces*, Mat. Sb.**191**(2000), no. 3, 143–160 (Russian, with Russian summary); English transl., Sb. Math.**191**(2000), no. 3-4, 459–476. MR**1773258**, 10.1070/SM2000v191n03ABEH000467**19.**V. V. Shchigolev,*Infinitely based -spaces and -ideals*, Ph.D. thesis, Moscow State University, 2002.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16R10

Retrieve articles in all journals with MSC (2000): 16R10

Additional Information

**Elena V. Aladova**

Affiliation:
Department of Algebra, Moscow Pedagogical State University, 14 Krasnoprudnaya St., Moscow 107140, Russia

**Alexei N. Krasilnikov**

Affiliation:
Department of Mathematics, University of Brasília, 70910-900, Brasília-DF, Brazil

Email:
alexei@unb.br

DOI:
https://doi.org/10.1090/S0002-9947-09-04977-0

Received by editor(s):
June 7, 2006

Published electronically:
June 23, 2009

Additional Notes:
The first author was partially supported by INTAS

The second author was partially supported by CNPq/FAPDF/PRONEX-Brazil, CNPq/ PADCT-Brazil, FINATEC-Brazil and RFBR-Russia

Article copyright:
© Copyright 2009
American Mathematical Society