Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Entropy solutions for the $ p(x)$-Laplace equation

Authors: Manel Sanchón and José Miguel Urbano
Journal: Trans. Amer. Math. Soc. 361 (2009), 6387-6405
MSC (2000): Primary 35J70; Secondary 35D05, 35D10, 46E35
Published electronically: June 18, 2009
MathSciNet review: 2538597
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a Dirichlet problem in divergence form with variable growth, modeled on the $ p(x)$-Laplace equation. We obtain existence and uniqueness of an entropy solution for $ L^1$ data, as well as integrability results for the solution and its gradient. The proofs rely crucially on a priori estimates in Marcinkiewicz spaces with variable exponent, for which we obtain new inclusion results of independent interest.

References [Enhancements On Off] (What's this?)

  • 1. E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140. MR 1814973 (2002h:49056)
  • 2. E. Acerbi and G. Mingione, Gradient estimates for the $ p(x)$-Laplacian system, J. reine angew. Math. 584 (2005), 117-148. MR 2155087 (2006f:35068)
  • 3. A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl. 182 (2003), 53-79. MR 1970464 (2004e:35054)
  • 4. S. Antontsev and S. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), 515-545. MR 2103951 (2005m:35140)
  • 5. Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vázquez, An $ L\sp 1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22 (1995), 241-273. MR 1354907 (96k:35052)
  • 6. L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169. MR 1025884 (92d:35286)
  • 7. L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), 641-655. MR 1163440 (94c:35083)
  • 8. Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406. MR 2246061 (2007d:94004)
  • 9. M. Crandall and P. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 (1975), 207-218. MR 0382848 (52:3730)
  • 10. E. DiBenedetto, $ C\sp{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. MR 709038 (85d:35037)
  • 11. E. DiBenedetto and J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993), 1107-1134. MR 1246185 (94i:35077)
  • 12. E. DiBenedetto, J.M. Urbano and V. Vespri, Current issues on singular and degenerate evolution equations, in: Handbook of Differential Equations, Evolutionary Equations, vol. 1, pp. 169-286, Elsevier, 2004. MR 2103698 (2006b:35160)
  • 13. L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $ L\sp {p(\cdot)}$ and $ W\sp {k,p(\cdot)}$, Math. Nachr. 268 (2004), 31-43. MR 2054530 (2005d:46071)
  • 14. L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in: FSDONA04 Proceedings, Drabek and Rakosnik (eds.), pp. 38-58, Milovy, Czech Republic, 2004.
  • 15. D. Edmunds and J. Rákosnık, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267-293. MR 1815935 (2001m:46072)
  • 16. X. Fan and Q. Zhang, Existence of solutions for $ p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. MR 1954585 (2004f:35060)
  • 17. X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295-318. MR 1688232 (2000a:49072)
  • 18. J. Fleckinger, E. Harrell and F. de Thélin, Boundary behavior and estimates for solutions of equations containing the $ p$-Laplacian, Electron. J. Differential Equations 1999 (1999), 1-19. MR 1713597 (2000k:35083)
  • 19. P. Halmos, Measure theory, D.Van Nostrand Company, New York, 1950. MR 0033869 (11:504d)
  • 20. P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), 205-222. MR 2255345 (2008f:35119)
  • 21. E. Henriques and J.M. Urbano, Intrinsic scaling for PDEs with an exponential nonlinearity, Indiana Univ. Math. J. 55 (2006), 1701-1722. MR 2270934 (2007h:35164)
  • 22. J. Kinnunen and S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients, Differential Integral Equations 14 (2001), 475-492. MR 1799417 (2002a:35070)
  • 23. O. Kováčik and J. Rákosnık, On spaces $ L^{p(x)}$ and $ W^{1,p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618. MR 1134951 (92m:46047)
  • 24. M. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, New York, 1964. MR 0159197 (28:2414)
  • 25. A. Kufner, J. Oldřich and S. Fučík, Function spaces, Noordhoff International Publishing, Leyden, 1977. MR 0482102 (58:2189)
  • 26. J. Leray and J.L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107. MR 0194733 (33:2939)
  • 27. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267-284. MR 969900 (90a:49017)
  • 28. M. Růžička, Electrorheological fluids: Modeling and mathematical theory, Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000. MR 1810360 (2002a:76004)
  • 29. I. Sharapudinov, On the topology of the space $ L^{p(t)}([0;1])$, Math. Notes 26 (1979), 796-806. [Translation of Mat. Zametki 26 (1978), 613-632.] MR 552723 (81c:46021)
  • 30. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. MR 727034 (85g:35047)
  • 31. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675-710, 877. MR 864171 (88a:49026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J70, 35D05, 35D10, 46E35

Retrieve articles in all journals with MSC (2000): 35J70, 35D05, 35D10, 46E35

Additional Information

Manel Sanchón
Affiliation: CMUC, Department of Mathematics, University of Coimbra, 3001–454 Coimbra, Portugal
Address at time of publication: Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain

José Miguel Urbano
Affiliation: CMUC, Department of Mathematics, University of Coimbra, 3001–454 Coimbra, Portugal

Received by editor(s): June 15, 2006
Received by editor(s) in revised form: October 10, 2007
Published electronically: June 18, 2009
Additional Notes: The research of the first author was partially supported by CMUC/FCT and MCYT grants BMF2002-04613-C03, MTM2005-07660-C02.
The research of the second author was partially supported by CMUC/FCT and Project POCI/MAT/57546/2004.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society