Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Improved Hardy and Rellich inequalities on Riemannian manifolds


Authors: Ismail Kombe and Murad Özaydin
Journal: Trans. Amer. Math. Soc. 361 (2009), 6191-6203
MSC (2000): Primary 26D10; Secondary 53C21
DOI: https://doi.org/10.1090/S0002-9947-09-04642-X
Published electronically: July 22, 2009
MathSciNet review: 2538592
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish improved Hardy and Rellich type inequalities on a Riemannian manifold $ M$. Furthermore, we also obtain sharp constants for improved Hardy and Rellich type inequalities on the hyperbolic space $ \mathbb{H}^n$.


References [Enhancements On Off] (What's this?)

  • 1. B. Abdellaoui, D. Colorado, I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 23 (2005), no. 3, 327-345. MR 2142067 (2006c:26025)
  • 2. P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121-139. MR 742415 (85f:35099)
  • 3. G. Barbatis, Best constants for higher-order Rellich inequalities in $ L^p(\Omega)$, Math. Z. 255 (2007), no. 4, 877-896. MR 2274540
  • 4. G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $ L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2169-2196. MR 2048514 (2005a:26016)
  • 5. H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complutense Madrid 10 (1997), 443-469. MR 1605678 (99a:35081)
  • 6. X. Cabré and Y. Martel, Existence versus explosion instantané pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris Sér. I. Math. 329 (1999), 973-978. MR 1733904 (2000j:35117)
  • 7. G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl. (9) 76 (1997), no. 10, 883-891. MR 1489943 (99c:53026)
  • 8. E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $ L\sb p(\Omega)$, Math. Z. 227 (1998), no. 3, 511-523. MR 1612685 (99e:58169)
  • 9. M. P. do Carmo and C. Xia, Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities, Compos. Math. 140 (2004), no. 3, 818-826. MR 2041783 (2005b:53052)
  • 10. L. Dupaigne, A nonlinear elliptic PDE with the inverse-square potential, J. Anal. Math. 86 (2002), 359-398. MR 1894489 (2003c:35046)
  • 11. G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl. 3 (1997), 207-238. MR 1448337 (98f:42006)
  • 12. E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116. MR 643158 (84i:35070)
  • 13. J. Garcia Azorero and I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Equations 144 (1998), 441-476. MR 1616905 (99f:35099)
  • 14. G. Grillo, Hardy and Rellich-type inequalities for metrics defined by vector fields, Potential Analysis 18 (2003), 187-217. MR 1953228 (2003j:46043)
  • 15. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Physik 43 (1927), 172-198.
  • 16. I. Kombe, Hardy, Rellich and uncertainty principle inequalities on Carnot groups, preprint.
  • 17. P. Li and J. Wang, Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 921-982. MR 2316978
  • 18. P. Lindqvist, On the equation div$ (\vert\nabla u\vert^{p-2}\nabla u)+\lambda\vert u\vert^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), 157-164. MR 1007505 (90h:35088)
  • 19. V. M. Miklyukov and M. L. Vuorinen, Hardy's inequality for $ W\sp {1,p}\sb 0$-functions on Riemannian manifolds, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2745-2754. MR 1600117 (99m:58196)
  • 20. V. Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, preprint.
  • 21. I. Peral and J. L. Vázquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal. 129 (1995), 201-224. MR 1328476 (96b:35023)
  • 22. F. Rellich, ``Perturbation theory of eigenvalue problems'', Gordon and Breach, New York, 1969. MR 0240668 (39:2014)
  • 23. L. Sun, An Uncertainty Principle on Hyperbolic Space, Proc. Amer. Math. Soc. 121 (1994), 471-479. MR 1186137 (94h:43005)
  • 24. J. L. Vázquez and E. Zuazua, The Hardy constant and the asymptotic behaviour of the heat equation with an inverse-square potential , J. Funct. Anal. 173 (2000), 103-153. MR 1760280 (2001j:35122)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 26D10, 53C21

Retrieve articles in all journals with MSC (2000): 26D10, 53C21


Additional Information

Ismail Kombe
Affiliation: Department of Mathematics, Dawson-Loeffler Science & Mathematics Bldg., Oklahoma City University, 2501 N. Blackwelder, Oklahoma City, Oklahoma 73106-1493
Email: ikombe@okcu.edu

Murad Özaydin
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019-0315
Email: mozaydin@math.ou.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04642-X
Keywords: Hardy inequality, Rellich inequality, sharp constants
Received by editor(s): March 13, 2007
Published electronically: July 22, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society