-thresholds of hypersurfaces

Authors:
Manuel Blickle, Mircea Mustata and Karen E. Smith

Journal:
Trans. Amer. Math. Soc. **361** (2009), 6549-6565

MSC (2000):
Primary 13A35; Secondary 14B05

Published electronically:
July 16, 2009

MathSciNet review:
2538604

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use the -module theoretic description of generalized test ideals to show that in any -finite regular ring the -thresholds of hypersurfaces are discrete and rational. Furthermore we show that any limit of -pure thresholds of principal ideals in bounded dimension is again an -pure threshold; hence in particular the limit is rational.

**[AMBL]**Josep Alvarez-Montaner, Manuel Blickle, and Gennady Lyubeznik,*Generators of 𝐷-modules in positive characteristic*, Math. Res. Lett.**12**(2005), no. 4, 459–473. MR**2155224**, 10.4310/MRL.2005.v12.n4.a2**[Bli]**M. Blickle, The intersection homology -module in finite characteristic, Ph.D. thesis, University of Michigan, 2001, math. AG/0110244.**[BMS]**M. Blickle, M. Mustaţă and K. E. Smith, Discreteness and rationality of -thresholds, Michigan Math. J.**57**(2008), 43-61.**[dFM]**T. de Fernex and M. Mustaţă, Limits of log canonical thresholds, Ann. Sci. École Norm. Sup., to appear.**[Gol]**Robert Goldblatt,*Lectures on the hyperreals*, Graduate Texts in Mathematics, vol. 188, Springer-Verlag, New York, 1998. An introduction to nonstandard analysis. MR**1643950****[Ha]**Nobuo Hara,*F-pure thresholds and F-jumping exponents in dimension two*, Math. Res. Lett.**13**(2006), no. 5-6, 747–760. With an appendix by Paul Monsky. MR**2280772**, 10.4310/MRL.2006.v13.n5.a6**[HY]**Nobuo Hara and Ken-Ichi Yoshida,*A generalization of tight closure and multiplier ideals*, Trans. Amer. Math. Soc.**355**(2003), no. 8, 3143–3174 (electronic). MR**1974679**, 10.1090/S0002-9947-03-03285-9**[Kol]**János Kollár,*Singularities of pairs*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR**1492525****[Laz]**Robert Lazarsfeld,*Positivity in algebraic geometry. II*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR**2095472****[Lyu]**Gennady Lyubeznik,*𝐹-modules: applications to local cohomology and 𝐷-modules in characteristic 𝑝>0*, J. Reine Angew. Math.**491**(1997), 65–130. MR**1476089**, 10.1515/crll.1997.491.65**[MTW]**Mircea Mustaţǎ, Shunsuke Takagi, and Kei-ichi Watanabe,*F-thresholds and Bernstein-Sato polynomials*, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 341–364. MR**2185754****[Ta1]**Shunsuke Takagi,*Formulas for multiplier ideals on singular varieties*, Amer. J. Math.**128**(2006), no. 6, 1345–1362. MR**2275023****[Ta2]**S. Takagi, Adjoint ideals along closed subvarieties of higher codimension, J. Reine Angew. Math., to appear.**[TW]**Shunsuke Takagi and Kei-ichi Watanabe,*On F-pure thresholds*, J. Algebra**282**(2004), no. 1, 278–297. MR**2097584**, 10.1016/j.jalgebra.2004.07.011

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
13A35,
14B05

Retrieve articles in all journals with MSC (2000): 13A35, 14B05

Additional Information

**Manuel Blickle**

Affiliation:
Fachbereich Mathematik, Universität Duisburg-Essen, Standort Essen, 45117 Essen, Germany

Email:
manuel.blickle@uni-essen.de

**Mircea Mustata**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
mmustata@umich.edu

**Karen E. Smith**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
kesmith@umich.edu

DOI:
https://doi.org/10.1090/S0002-9947-09-04719-9

Keywords:
$F$-thresholds,
test ideals,
$F$-modules,
nonstandard extension

Received by editor(s):
July 23, 2007

Received by editor(s) in revised form:
January 2, 2008

Published electronically:
July 16, 2009

Additional Notes:
Partial support was provided by grant SFB/TR 45 of the DFG (first author), NSF grants DMS-0758454, DMS 0111298 and a Packard Fellowship (second author), and NSF grant DMS-0500823(third author)

Article copyright:
© Copyright 2009
American Mathematical Society