Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Iwasawa decompositions of some infinite-dimensional Lie groups

Author: Daniel Beltita
Journal: Trans. Amer. Math. Soc. 361 (2009), 6613-6644
MSC (2000): Primary 22E65; Secondary 22E46, 47B10, 47L20, 58B25
Published electronically: July 22, 2009
MathSciNet review: 2538608
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We set up an abstract framework that allows the investigation of Iwasawa decompositions for involutive infinite-dimensional Lie groups modeled on Banach spaces. This provides a method to construct Iwasawa decompositions for classical real or complex Banach-Lie groups associated with the Schatten ideals $ \mathfrak{S}_p(\mathcal{H})$ on a complex separable Hilbert space $ \mathcal{H}$ if $ 1<p<\infty$.

References [Enhancements On Off] (What's this?)

  • [Ara78] J. Arazy, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), no. 4, 453-495. MR 516764 (81k:47056a)
  • [Arv67] W.B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642. MR 0223899 (36:6946)
  • [Arv75] W.B. Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208-233. MR 0383098 (52:3979)
  • [Ba69] V.K. Balachandran, Simple $ L^*$-algebras of classical type, Math. Ann. 180 (1969), 205-219. MR 0243362 (39:4684)
  • [BD01] V. Bălan, J. Dorfmeister, Birkhoff decompositions and Iwasawa decompositions for loop groups, Tohoku Math. J. 53 (2001), 593-615. MR 1862221 (2002j:22023)
  • [Be05] D. Beltiţă, On Banach-Lie algebras, spectral decompositions and complex polarizations. In: D. Gaşpar, I. Gohberg, D. Timotin, F.-H. Vasilescu, L. Zsido (eds.), Recent Advances in Operator Theory, Operator Algebras, and Their Applications. XIXth International Conference on Operator Theory, Timisoara (Romania), 2002. Operator Theory: Advances and Applications, 153. Birkhäuser Verlag, Basel, 2005, pp. 13-38. MR 2105467 (2005k:58009)
  • [Be06] D. Beltiţă, Smooth Homogeneous Structures in Operator Theory, Monographs and Surveys in Pure and Applied Mathematics, 137. Chapman & Hall/CRC Press, Boca Raton-London-New York-Singapore, 2006. MR 2188389 (2007c:58010)
  • [Be09] D. Beltiţă, Functional analytic background for a theory of infinite-dimensional reductive Lie groups, in: K.-H. Neeb, A. Pianzola (eds.), Developments and Trends in Infinite Dimensional Lie Theory, Progress in Mathematics, Birkhäuser Verlag, Basel 2009.
  • [BP07] D. Beltiţă, B. Prunaru, Amenability, completely bounded projections, dynamical systems and smooth orbits, Integral Equations Operator Theory 57 (2007), no. 1, 1-17. MR 2294192 (2008d:46076)
  • [BR05] D. Beltiţă, T.S. Ratiu, Symplectic leaves in real Banach Lie-Poisson spaces, Geom. Funct. Anal. 15 (2005), no. 4, 753-779. MR 2221149 (2007k:58008)
  • [BR07] D. Beltiţă, T.S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Adv. Math. 208 (2007), no. 1, 299-317. MR 2304319
  • [BS01] D. Beltiţă, M. Şabac, Lie Algebras of Bounded Operators, Operator Theory: Advances and Applications, 120. Birkhäuser Verlag, Basel, 2001. MR 1825892 (2003b:47107)
  • [BFR93] A.M. Bloch, H. Flaschka, T.S. Ratiu, A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus, Invent. Math. 113 (1993), no. 3, 511-529. MR 1231835 (94i:58063)
  • [Bo80] R.P. Boyer, Representation theory of the Hilbert-Lie group $ {\rm U}({\mathfrak{H}})_2$, Duke Math. J. 47 (1980), no. 2, 325-344. MR 575900 (81g:22024)
  • [Bo93] R.P. Boyer, Representation theory of infinite-dimensional unitary groups, in: Representation theory of groups and algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, pp. 381-391. MR 1216198 (94g:22038)
  • [Ca85] A.L. Carey, Some homogeneous spaces and representations of the Hilbert Lie group $ {\mathcal U}(H)_2$, Rev. Roumaine Math. Pures Appl. 30 (1985), no. 7, 505-520. MR 826232 (87e:22044)
  • [CG99] G. Corach, J.E. Galé, On amenability and geometry of spaces of bounded representations, J. London Math. Soc. (2) 59 (1999), no. 1, 311-329. MR 1688504 (2000f:46064)
  • [Da88] K.R. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series, 191. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 972978 (90f:47062)
  • [DPW02] I. Dimitrov, I. Penkov, J.A. Wolf, A Bott-Borel-Weil theory for direct limits of algebraic groups, Amer. J. Math. 124 (2002), no. 5, 955-998. MR 1925340 (2003k:20064)
  • [DFWW] K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, Commutator structure of operator ideals, Adv. Math. 185(2004), no. 1, 1-79. MR 2058779 (2005f:47149)
  • [Er72] J.A. Erdos, The triangular factorization of operators on Hilbert space, Indiana Univ. Math. J. 22 (1972/73), 939-950. MR 0336404 (49:1179)
  • [Er78] J.A. Erdos, Triangular integration on symmetrically normed ideals, Indiana Univ. Math. J. 27 (1978), no. 3, 401-408. MR 0473892 (57:13551)
  • [EL72] J.A. Erdos, W.E. Longstaff, The convergence of triangular integrals of operators on Hilbert space, Indiana Univ. Math. J. 22 (1972/73), 929-938. MR 0336403 (49:1178)
  • [Ga06] J.E. Galé, Geometría de órbitas de representaciones de grupos y álgebras promediables, Rev. R. Acad. Cienc. Exactas Fís. Quím. Nat. Zaragoza (2) 61 (2006), 7-46. MR 2311998
  • [GK69] I.C. Gohberg, M.G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence, RI, 1969. MR 0246142 (39:7447)
  • [GK70] I.C. Gohberg, M.G. Kreĭn, Theory and Applications of Volterra Operators in Hilbert Space. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, RI, 1970. MR 0264447 (41:9041)
  • [Gru05] H. Grundling, Generalising group algebras, J. London Math. Soc. (2) 72 (2005), no. 3, 742-762. MR 2190335 (2006i:46079)
  • [Ha72] P. de la Harpe, Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Mathematics 285, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0476820 (57:16372)
  • [HK77] L.A. Harris, W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math. 21(1977), 666-674. MR 0460551 (57:544)
  • [He01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces. (Corrected reprint of the 1978 original). Graduate Studies in Mathematics, 34. American Mathematical Society, Providence, RI, 2001. MR 1834454 (2002b:53081)
  • [Iw49] K. Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507-558. MR 0029911 (10:679a)
  • [KW02] V. Kaftal, G. Weiss, Traces, ideals, and arithmetic means, Proc. Natl. Acad. Sci. USA 99 (2002), no. 11, 7356-7360. MR 1907839 (2003e:47119)
  • [KW06] V. Kaftal, G. Weiss, $ B(H)$ lattices, density and arithmetic mean ideals, preprint, 2006.
  • [Ke04] P. Kellersch, Eine Verallgemeinerung der Iwasawa Zerlegung in Loop Gruppen (Dissertation, TU-München, 1999), Differential Geometry - Dynamical Systems. Monogr. 4. Geometry Balkan Press, Bucharest, 2004. MR 2158164 (2006b:22017)
  • [Ki73] A.A. Kirillov, Representations of the infinite-dimensional unitary group. (Russian) Dokl. Akad. Nauk. SSSR 212 (1973), 288-290. MR 0340487 (49:5239)
  • [Kn96] A.W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics 140, Birkhäuser-Verlag, Boston-Basel-Berlin, 1996. MR 1399083 (98b:22002)
  • [Ko73] B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455. MR 0364552 (51:806)
  • [Lan01] S. Lang, Fundamentals of Differential Geometry (corrected second printing), Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 2001. MR 1666820 (99m:53001)
  • [Lar85] D.R. Larson, Nest algebras and similarity transformations, Ann. of Math. (2) 121 (1985), no. 3, 409-427. MR 794368 (86j:47061)
  • [LR91] J.-H. Lu, T.S. Ratiu, On the nonlinear convexity theorem of Kostant, J. Amer. Math. Soc. 4 (1991), no. 2, 349-363. MR 1086967 (92a:58048)
  • [MSS88] P.S. Muhly, K.-S. Saito, B. Solel, Coordinates for triangular operator algebras, Ann. of Math. (2) 127 (1988), no. 2, 245-278. MR 932297 (89h:46088)
  • [NRW01] L. Natarajan, E. Rodríguez-Carrington, J.A. Wolf, The Bott-Borel-Weil theorem for direct limit groups, Trans. Amer. Math. Soc. 353 (2001), no. 11, 4583-4622. MR 1650034 (2002a:22013)
  • [Nee98] K.-H. Neeb, Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. reine angew. Math. 497 (1998), 171-222. MR 1617431 (99h:22027)
  • [Nee02a] K.-H. Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, in: A. Strasburger, J. Hilgert, K.-H. Neeb, W. Wojtyński (eds.), Geometry and Analysis on Finite and Infinite-dimensional Lie Groups (Bedłewo, 2000), Banach Center Publ., vol. 55, Polish Acad. Sci. Warsaw, 2002, pp. 87-151. MR 1911982 (2003e:58007)
  • [Nee02b] K.-H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedicata 95 (2002), 115-156. MR 1950888 (2004a:58004)
  • [Nee04] K.-H. Neeb, Infinite-dimensional groups and their representations, in: Lie Theory, Progr. Math. 228, Birkhäuser, Boston, MA, 2004, pp. 213-328. MR 2042690 (2005f:22031)
  • [NØ98] K.-H. Neeb, B. Ørsted, Unitary highest weight representations in Hilbert spaces of holomorphic functions on infinite-dimensional domains, J. Funct. Anal. 156 (1998), no. 1, 263-300. MR 1632917 (99m:22022)
  • [Neu99] A. Neumann, An infinite-dimensional version of the Schur-Horn convexity theorem, J. Funct. Anal. 161 (1999), no. 2, 418-451. MR 1674643 (2000a:22030)
  • [Neu02] A. Neumann, An infinite dimensional version of the Kostant convexity theorem, J. Funct. Anal. 189 (2002), no. 1, 80-131. MR 1887630 (2003d:47100)
  • [Ol78] G.I. Ol'šanskiĭ, Unitary representations of the infinite-dimensional classical groups U$ (p,\infty )$, SO$ \sb{0}(p,\infty )$, Sp$ (p,\infty )$, and of the corresponding motion groups. (Russian) Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 32-44, 96. MR 509382 (80g:22020)
  • [Ol88] G.I. Ol'šanskiĭ, The method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups. (Russian) Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, 23-37, 96. MR 976993 (90f:22025)
  • [Pa88] A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence, RI, 1988. MR 961261 (90e:43001)
  • [Pic90] D. Pickrell, Separable representations for automorphism groups of infinite symmetric spaces, J. Funct. Anal. 90 (1990), no. 1, 1-26. MR 1047575 (91h:22038)
  • [Pit88] D.R. Pitts, Factorization problems for nests: Factorization methods and characterizations of the universal factorization property, J. Funct. Anal. 79 (1988), no. 1, 57-90. MR 950084 (90a:46160)
  • [Po86] S.C. Power, Factorization in analytic operator algebras, J. Funct. Anal. 67 (1986), no. 3, 413-432. MR 845465 (87k:47040)
  • [Se57] I.E. Segal, The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc. 8 (1957), 197-203. MR 0084122 (18:812f)
  • [SV75] Ş. Strătilă, D. Voiculescu, Representations of AF-algebras and of the group U$ (\infty )$, Lecture Notes in Mathematics, Vol. 486. Springer-Verlag, Berlin-New York, 1975. MR 0458188 (56:16391)
  • [Tu05] A.B. Tumpach, Variétés Kählériennes et Hyperkählériennes de Dimension Infinie, Ph.D. Thesis, École Polytechnique, Paris, 2005.
  • [Tu06] A.B. Tumpach, Mostow decomposition theorems for $ L^*$-groups and applications to affine coadjoint orbits and stable manifolds, preprint math-ph/0605039.
  • [Up85] H. Upmeier, Symmetric Banach Manifolds and Jordan $ C^*$-Algebras, North-Holland Math. Stud. 104, Notas de Matemática 96, North-Holland, Amsterdam, 1985. MR 776786 (87a:58022)
  • [We05] G. Weiss, $ B(H)$-commutators: A historical survey. In: D. Gaşpar, I. Gohberg, D. Timotin, F.-H. Vasilescu, L. Zsido (eds.), Recent Advances in Operator Theory, Operator Algebras, and Their Applications. XIXth International Conference on Operator Theory, Timisoara (Romania), 2002. Operator Theory: Advances and Applications, 153. Birkhäuser Verlag, Basel, 2005, pp. 307-320. MR 2105485 (2005j:47039)
  • [Wo05] J.A. Wolf, Principal series representations of direct limit groups, Compos. Math. 141 (2005), no. 6, 1504-1530. MR 2188447 (2007d:22010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E65, 22E46, 47B10, 47L20, 58B25

Retrieve articles in all journals with MSC (2000): 22E65, 22E46, 47B10, 47L20, 58B25

Additional Information

Daniel Beltita
Affiliation: Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, Bucharest, Romania

Keywords: Classical Lie group; Iwasawa decomposition; operator ideal; triangular integral
Received by editor(s): February 11, 2008
Published electronically: July 22, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society