Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Almost homogeneous manifolds with boundary


Author: Benoît Kloeckner
Journal: Trans. Amer. Math. Soc. 361 (2009), 6729-6740
MSC (2000): Primary 53C30; Secondary 53C35
Published electronically: July 17, 2009
MathSciNet review: 2538611
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study differentiable actions of a Lie group on a manifold with boundary that are transitive on the interior. Under an algebraic condition, there are infinitely many actions that are topologically, but not differentiably conjugate to a given one. This result applies in particular to the differentiable compactifications of non-compact rank one symmetric spaces, which we classify.


References [Enhancements On Off] (What's this?)

  • 1. Daniel Allcock, Reflection groups on the octave hyperbolic plane, J. Algebra 213 (1999), no. 2, 467–498. MR 1673465, 10.1006/jabr.1998.7671
  • 2. Vladimir I. Arnold, Ordinary differential equations, Universitext, Springer-Verlag, Berlin, 2006. Translated from the Russian by Roger Cooke; Second printing of the 1992 edition. MR 2242407
  • 3. D. B. A. Epstein, Complex hyperbolic geometry, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 93–111. MR 903851
  • 4. William M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1695450
  • 5. Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 0098847
  • 6. Benoıt Kloeckner, Symmetric spaces of higher rank do not admit differentiable compactifications, 2005, preprint.
  • 7. Benoît Kloeckner, On differentiable compactifications of the hyperbolic space, Transform. Groups 11 (2006), no. 2, 185–194. MR 2231184, 10.1007/s00031-004-1108-8
  • 8. Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1916029
  • 9. G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004
  • 10. Helmut Salzmann, Dieter Betten, Theo Grundhöfer, Hermann Hähl, Rainer Löwen, and Markus Stroppel, Compact projective planes, de Gruyter Expositions in Mathematics, vol. 21, Walter de Gruyter & Co., Berlin, 1995. With an introduction to octonion geometry. MR 1384300
  • 11. Alberto Tognoli, Approximation theorems and Nash conjecture, Journées de géométrie analytique (Univ. Poitiers, Poitiers, 1972), Soc. Math. France, Paris, 1974, pp. 53–68. Bull. Soc. Math. France Suppl. Mém., No. 38. MR 0396573

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C30, 53C35

Retrieve articles in all journals with MSC (2000): 53C30, 53C35


Additional Information

Benoît Kloeckner
Affiliation: Institut Fourier, Université de Grenoble I, UMR 5582 CNRS-UJF, 38402 Saint- Martin-d’Hères, France
Email: bkloeckn@ujf-grenoble.fr

DOI: http://dx.doi.org/10.1090/S0002-9947-09-04907-1
Received by editor(s): April 15, 2008
Published electronically: July 17, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.