Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Almost bi-Lipschitz embeddings and almost homogeneous sets

Authors: Eric J. Olson and James C. Robinson
Journal: Trans. Amer. Math. Soc. 362 (2010), 145-168
MSC (2000): Primary 54F45, 57N35
Published electronically: August 17, 2009
MathSciNet review: 2550147
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with embeddings of homogeneous spaces into Euclidean spaces. We show that any homogeneous metric space can be embedded into a Hilbert space using an almost bi-Lipschitz mapping (bi-Lipschitz to within logarithmic corrections). The image of this set is no longer homogeneous, but `almost homogeneous'. We therefore study the problem of embedding an almost homogeneous subset $ X$ of a Hilbert space $ H$ into a finite-dimensional Euclidean space. We show that if $ X$ is a compact subset of a Hilbert space and $ X-X$ is almost homogeneous, then, for $ N$ sufficiently large, a prevalent set of linear maps from $ X$ into $ \mathbb{R}^N$ are almost bi-Lipschitz between $ X$ and its image.

References [Enhancements On Off] (What's this?)

  • 1. P. Assouad Plongements lipschitziens dans $ \mathbb{R}^n$. Bulletin de la S. M. F. 111 (1983), 429-448. MR 763553 (86f:54050)
  • 2. A. Ben-Artzi, A. Eden, C. Foias, and B. Nicolaenko, Hölder continuity for the inverse of Mañé's projection. J. Math. Anal. Appl. 178 (1993), 22-29. MR 1231724 (94d:58091)
  • 3. M.G. Bouligand, Ensumbles Impropres et Nombre Dimensionnel, Bull. Sci. Math. 52 (1928), 320-344, 361-376.
  • 4. C. Foias and E.J. Olson, Finite fractal dimension and Hölder-Lipschitz parametrization. Indiana Univ. Math. J. 45 (1996), 603-616. MR 1422098 (97m:58120)
  • 5. P.K. Friz and J.C. Robinson, Smooth attractors have zero ``thickness''. J. Math. Anal. Appl. 240 (1999), 37-46. MR 1728206 (2001f:37130)
  • 6. P. Hajłasz, Whitney's example by way of Assouad's embedding. Proc. Amer. Math. Soc. 131 (2003), 3463-3467. MR 1991757 (2004c:26013)
  • 7. J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • 8. J. Heinonen, Geometric embeddings of metric spaces. Report. University of Jyväskylä Department of Mathematics and Statistics, 90. University of Jyväskylä, Jyväskylä, 2003. MR 2014506 (2004i:42018)
  • 9. B.R. Hunt, T. Sauer, and J.A. Yorke, Prevalence: a translation-invariant almost every for infinite dimensional spaces. Bull. Amer. Math. Soc. 27 (1992), 217-238; Prevalence: an addendum. Bull. Amer. Math. Soc. 28 (1993), 306-307 MR 1161274 (93k:28018)
  • 10. B.R. Hunt and V.Y. Kaloshin, How projections affect the dimension spectrum of fractal measures. Nonlinearity 10 (1997), 1031-1046. MR 1473372 (98k:28010)
  • 11. B.R. Hunt and V.Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces. Nonlinearity 12 (1999), 1263-1275. MR 1710097 (2001a:28009)
  • 12. U. Lang and C. Plaut, Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata 87 (2001), 285-307. MR 1866853 (2002i:51011)
  • 13. T. J. Laakso, Plane with $ A\sb \infty$-weighted metric not bi-Lipschitz embeddable to $ {\mathbb{R}}\sp N$. Bull. London Math. Soc. 34 (2002), 667-676. MR 1924353 (2003h:30029)
  • 14. J. Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35 (1998), 23-76. MR 1608518 (99m:54023)
  • 15. R. Mañé, On the dimension of the compact invariant sets of certain nonlinear maps. Springer Lecture Notes in Math., vol. 898, Springer, New York, 230-242, 1981. MR 654892 (84k:58119)
  • 16. H. Movahedi-Lankarani and R. Wells, On bi-Lipschitz embeddings. Portugaliae Mathematica, 62 (2005) 247-268. MR 2171672 (2006f:54030)
  • 17. E.J. Olson, Bouligand dimension and almost Lipschitz embeddings. Pacific J. Math. 2 (2002), 459-474. MR 1888175 (2003a:37030)
  • 18. E. Pinto de Moura and J.C. Robinson, Lipschitz deviation and the regularity of embeddings of finite-dimensional sets, submitted.
  • 19. E. Pinto de Moura and J.C. Robinson, Orthogonal sequences and regularity of embeddings into finite-dimensionsl spaces, submitted.
  • 20. J.C. Robinson, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity 22 (2009) 711-728.
  • 21. T. Sauer, J.A. Yorke, and M. Casdagli, Embedology, J. Statist. Phys. 65 (1991) 579-616. MR 1137425 (93c:58147)
  • 22. S. Semmes, On the nonexistence of bi-Lipschitz parametrizations and geometric problems about $ A_\infty$-weights. Rev. Mat. Iberoamer. 12 (1996), 337-410. MR 1402671 (97e:30040)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 54F45, 57N35

Retrieve articles in all journals with MSC (2000): 54F45, 57N35

Additional Information

Eric J. Olson
Affiliation: Department of Mathematics/084, University of Nevada, Reno, Nevada 89557

James C. Robinson
Affiliation: Mathematical Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

Keywords: Assouad dimension, Bouligand dimension, doubling spaces, embedding theorems, homogeneous spaces
Received by editor(s): September 15, 2005
Received by editor(s) in revised form: May 27, 2007
Published electronically: August 17, 2009
Additional Notes: The second author was a Royal Society University Research Fellow when this paper was written, and he would like to thank the Society for all their support. Both authors would like to thank Professor Juha Heinonen for his helpful advice, and Eleonora Pinto de Moura for a number of corrections after her close reading of the manuscript.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society