Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Projective normality of the moduli space of rank $ 2$ vector bundles on a generic curve


Author: Takeshi Abe
Journal: Trans. Amer. Math. Soc. 362 (2010), 477-490
MSC (2000): Primary 14H60, 14D20
DOI: https://doi.org/10.1090/S0002-9947-09-04816-8
Published electronically: August 12, 2009
MathSciNet review: 2550160
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the embedding to the projective space by the generalized theta divisors of the moduli space of rank $ 2$ vector bundles on a generic curve is projective normal.


References [Enhancements On Off] (What's this?)

  • [A] T. Abe: On $ SL(2)$-$ GL(n)$ strange duality, J. Math. Kyoto Univ., Vol. 46(3), 657-692, (2006). MR 2311364 (2008e:14012)
  • [B1] A. Beauville: Fibrés de rang $ 2$ sur une courbe, fibré déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), no. 4, 431-448. MR 1005388 (91b:14038)
  • [B2] A. Beauville: Fibrés de rang deux sur une courbe, fibré déterminant et fonctions thêta II, Bull. Soc. Math. France 119 (1991), no. 3, 259-291. MR 1125667 (92m:14041)
  • [B3] A. Beauville: Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), 75-96, Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996. MR 1360497 (97f:17025)
  • [B-L] A. Beauville, Y. Laszlo: Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385-419. MR 1289330 (95k:14011)
  • [Bel] P. Belkale: The Strange Duality Conjecture for Generic Curves, math. AG/0602018.
  • [Bho1] U N. Bhosle: Tensor fields and singular principal bundles, Int. Math. Res. Not. 2004, no. 57, 3057-3077. MR 2098029 (2006f:14048)
  • [Bho2] U N. Bhosle: Vector bundles with a fixed determinant on an irreducible nodal curve, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 4, 445-451. MR 2184204 (2007e:14054)
  • [B-V] S. Brivio, A. Verra: The theta divisor of $ {\rm SU}\sb C(2,2d)\sp s$ is very ample if $ C$ is not hyperelliptic, Duke Math. J. 82 (1996), no. 3, 503-552. MR 1387683 (97e:14017)
  • [D-N] J. M. Drezet, M. S. Narasimhan: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53-94. MR 999313 (90d:14008)
  • [F] G. Faltings: Moduli-stacks for bundles on semistable curves, Math. Ann. 304, 489-515 (1996). MR 1375622 (97d:14016)
  • [L] Y. Laszlo: A propos de l'espace des modules de fibrés de rang $ 2$ sur une courbe, Math. Ann. 299 (1994), no. 4, 597-608. MR 1286886 (95f:14021)
  • [M-O] A. Marian, D.  Oprea: The level-rank duality for non-abelian theta functions, Invent. Math. 168 (2007), no. 2, 225-247. MR 2289865 (2007k:14070)
  • [N-Rd] M. S. Narasimhan, T. R. Ramadas: Factorisation of generalised theta functions. I, Invent. Math. 114 (1993), no. 3, 565-623. MR 1244913 (94i:14017)
  • [N-R] M. S. Narasimhan, S. Ramanan: Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2) 89 1969 14-51. MR 0242185 (39:3518)
  • [Rd] T. R. Ramadas: Factorisation of generalised theta functions. II. The Verlinde formula, Topology 35 (1996), no. 3, 641-654. MR 1396770 (97j:14014)
  • [R] M. Raynaud: Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), no. 1, 103-125. MR 662131 (84a:14009)
  • [vG-I] B. van Geemen, E. Izadi: The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, J. Algebraic Geom. 10 (2001), no. 1, 133-177. MR 1795553 (2002e:14058)
  • [vG-P] B. van Geemen, E. Previato: Prym varieties and the Verlinde formula, Math. Ann. 294 (1992), no. 4, 741-754. MR 1190454 (93j:14037)
  • [Sch1] A. H. W. Schmitt: Singular principal $ G$-bundles on nodal curves, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 2, 215-251. MR 2127994 (2005k:14070)
  • [Sch2] A. H. W. Schmitt: Moduli spaces for semistable honest singular principal bundles on a nodal curve which are compatible with degeneration. A remark on U. N. Bhosle's paper: ``Tensor fields and singular principal bundles'', Int. Math. Res. Not. 2005, no. 23, 1427-1437. MR 2152237 (2007e:14019)
  • [S1] X. Sun: Degeneration of moduli spaces and generalized theta functions, J. Algebraic Geom. 9 (2000), no. 3, 459-527. MR 1752012 (2001h:14040)
  • [S2] X. Sun: Factorization of generalized theta functions in the reducible case, Ark. Mat. 41 (2003), no. 1, 165-202. MR 1971947 (2004c:14065)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14H60, 14D20

Retrieve articles in all journals with MSC (2000): 14H60, 14D20


Additional Information

Takeshi Abe
Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
Address at time of publication: Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
Email: abeken@kurims.kyoto-u.ac.jp, abeken@sci.kumamoto-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-09-04816-8
Received by editor(s): November 2, 2007
Received by editor(s) in revised form: May 2, 2008
Published electronically: August 12, 2009
Additional Notes: The author was partially supported by the Japanese Ministry of Education and Science, Grant-in-Aid for Young Scientists (B)
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society