Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Totally real immersions of surfaces


Authors: Andrzej Derdzinski and Tadeusz Januszkiewicz
Journal: Trans. Amer. Math. Soc. 362 (2010), 53-115
MSC (2000): Primary 53C15, 53C42; Secondary 32Q60
DOI: https://doi.org/10.1090/S0002-9947-09-04940-X
Published electronically: August 17, 2009
MathSciNet review: 2550145
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Totally real immersions $ f$ of a closed real surface $ \varSigma$ in an almost complex surface $ M$ are completely classified, up to homotopy through totally real immersions, by suitably defined homotopy classes $ \mathfrak{M}(f)$ of mappings from $ \varSigma $ into a specific real $ 5$-manifold $ E(M)$, while $ \mathfrak{M}(f)$ themselves are subject to a single cohomology constraint. This follows from Gromov's observation that totally real immersions satisfy the $ h$-principle. For the receiving complex surfaces $ \mathbf{C}^2$, $ \mathbf{C}$P$ ^1\times \mathbf{C}$P$ ^1$, $ \mathbf{C}$P$ ^2$ and $ \mathbf{C}$P$ ^2 \char93 m \overline{\mathbf{C}\text{\rm P}^2}$, $ m=1,2,\dots,7$, and all $ \varSigma$ (or, $ \mathbf{C}$P$ ^2\char93 8\overline{\mathbf{C}\text{\rm P}}$ and all orientable $ \varSigma$), we illustrate the above nonconstructive result with explicit examples of immersions realizing all possible equivalence classes. We also determine which equivalence classes contain totally real embeddings, and provide examples of such embeddings for all classes that contain them.


References [Enhancements On Off] (What's this?)

  • 1. A. Aeppli, On determining sets in a Stein manifold, Proc. Conf. Complex Analysis (Minneapolis, MN, 1964), 48-58, Springer, Berlin, 1965. MR 0220975 (36:4027)
  • 2. V. I. Arnol'd, On a characteristic class entering into conditions of quantization (in Russian), Funkcional. Anal. i Priložen. 1 (1967), 1-14. MR 0211415 (35:2296)
  • 3. P. Ahern and W. Rudin, Totally real embeddings of $ S^3$ in $ C^3$, Proc. Amer. Math. Soc. 94 (1985), 460-462. MR 787894 (86g:32031)
  • 4. M. Audin, Fibrés normaux d'immersions en dimension double, points doubles d'immersions lagrangiennes et plongements totalement réels, Comment. Math. Helv. 63 (1988), 593-623. MR 966952 (89m:57032)
  • 5. E. Bedford, Invariant forms on complex manifolds with application to holomorphic mappings, Math. Ann. 265 (1983), 377-397. MR 721401 (85b:32046)
  • 6. V. Borrelli, On totally real isotopy classes, Internat. Math. Res. Not. 2002, 89-109. MR 1874320 (2003a:57054)
  • 7. Y. M. Eliashberg and V. M. Kharlamov, On the number of complex points of a real surface in a complex surface (in Russian), Proceedings of the Leningrad International Topological Conference (Leningrad, 1982), Nauka, Leningrad, 1983, 143-148. Zbl 0609.32016
  • 8. Y. Eliashberg and N. Mishachev, Introduction to the $ h$-principle, Graduate Studies in Mathematics 48, AMS, Providence, RI, 2002. MR 1909245 (2003g:53164)
  • 9. T. Fiedler, Totally real embeddings of the torus into $ {\bf C}^2$, Ann. Global Anal. Geom. 5 (1987), 117-121. MR 944776 (89f:57043)
  • 10. F. Forstnerič, Some totally real embeddings of three-manifolds, Manuscripta Math. 55 (1986), 1-7. MR 828408 (88f:32059)
  • 11. F. Forstnerič, On totally real embeddings into $ C^n$, Exposition. Math. 4 (1986), 243-255. MR 880125 (88g:32016)
  • 12. F. Forstnerič, A totally real three-sphere in $ C^3$ bounding a family of analytic disks, Proc. Amer. Math. Soc. 108 (1990), 887-892. MR 1038758 (91g:32018)
  • 13. F. Forstnerič, Complex tangents of real surfaces in complex surfaces, Duke Math. J. 67 (1992), 353-376. MR 1177310 (93g:32025)
  • 14. F. Forstnerič, Equivalence of real submanifolds under volume-preserving holomorphic automorphisms of $ C^n$, Duke Math. J. 77 (1995), 431-445. MR 1321065 (96b:32022)
  • 15. F. Forstnerič, Stein domains in complex surfaces, J. Geom. Anal. 13 (2003), 77-94. MR 1967038 (2004c:32050)
  • 16. F. Forstnerič and J. P. Rosay, Approximation of biholomorphic mappings by automorphisms of $ C^n$, Invent. Math. 112 (1993), 323-349. MR 1213106 (94f:32032)
  • 17. X. Gong, Unimodular invariants of totally real tori in $ C^n$, American J. Math. 119 (1997), 19-54. MR 1428057 (98f:32017)
  • 18. X. Gong, On totally real spheres in complex space, Math. Ann. 309 (1997), 611-623. MR 1483826 (99c:32023)
  • 19. M. Gromov, Convex integration of differential relations, I, Math. USSR, Izv. 7 (1973), 329-343 (1974). MR 0413206 (54:1323)
  • 20. M. Gromov, Partial Differential Relations, Ergebnisse, ser. 3, vol. 9, Springer-Verlag, Berlin-New York, 1986. MR 864505 (90a:58201)
  • 21. T. Kawashima, Some remarks on Lagrangian imbeddings, J. Math. Soc. Japan 33 (1981), 281-294. MR 607945 (82e:53081)
  • 22. H.-F. Lai, Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172 (1972), 1-33. MR 0314066 (47:2618)
  • 23. W. S. Massey, Pontryagin squares in the Thom space of a bundle, Pacific J. Math. 31 (1969), 133-142. MR 0250332 (40:3571)
  • 24. J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Mathematics Studies vol. 76, Princeton Univ. Press, Princeton, 1974. MR 0440554 (55:13428)
  • 25. W. Rudin, Totally real Klein bottles in $ {\bf C}^2$, Proc. Amer. Math. Soc. 82 (1981), 653-654. MR 614897 (82i:32012)
  • 26. M. Slapar, Real surfaces in elliptic surfaces, Internat. J. Math. 16 (2005), 357-363. MR 2133261 (2005k:32050)
  • 27. E. L. Stout and W. R. Zame, Totally real imbeddings and the universal convering spaces of domains of holomorphy: some examples, Manuscripta Math. 50 (1985), 29-48. MR 784138 (86h:32026)
  • 28. E. L. Stout and W. R. Zame, A Stein manifold topologically but not holomorphically equivalent to a domain in $ C^n$, Adv. in Math. 60 (1986), 154-160. MR 840302 (87i:32021)
  • 29. A. Weinstein, Lectures on symplectic manifolds. Corrected reprint, CBMS Regional Conference Series in Mathematics vol. 29, AMS, Providence, R.I., 1979. MR 598470 (82b:58039)
  • 30. R. O. Wells, Compact real submanifolds of a complex manifold with non-degenerate holomorphic tangent bundles, Math. Ann. 179 (1969), 123-129. MR 0237823 (38:6104)
  • 31. R. O. Wells, Function theory on differentiable submanifolds, Contributions to analysis (a collection of papers dedicated to Lipman Bers), 407-441. Academic Press, New York, 1974. MR 0357856 (50:10322)
  • 32. H. Whitney, Topological properties of differentiable manifolds, Bull. Amer. Math. Soc. 43 (1937), 785-805. MR 1563640
  • 33. H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, pp. 101-141, University of Michigan Press, Ann Arbor, MI, 1941. MR 0005300 (3:133a)
  • 34. H. Whitney, The self-intersections of a smooth $ n$-manifold in $ 2n$-space, Ann. of Math. (2) 45 (1944), 220-246. MR 0010274 (5:273g)
  • 35. H. Whitney, Classification of the mappings of a $ 3$-complex in a simply connected space, Ann. of Math. (2) 50 (1949), 270-284. MR 0034020 (11:531c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C15, 53C42, 32Q60

Retrieve articles in all journals with MSC (2000): 53C15, 53C42, 32Q60


Additional Information

Andrzej Derdzinski
Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Email: andrzej@math.ohio-state.edu

Tadeusz Januszkiewicz
Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210 – and – Mathematical Institute, Wrocław University, 50-384 Wrocław, Poland – and – Mathematical Institute, Polish Academy of Sciences, 51-617 Wrocław, Poland
Email: tjan@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9947-09-04940-X
Keywords: Totally real immersion, pseudoholomorphic immersion, Maslov invariant, $h$-principle
Received by editor(s): January 9, 2007
Published electronically: August 17, 2009
Additional Notes: The second author was partially supported by NSF grant no. DMS-0405825
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society