Dirichlet series for finite combinatorial rank dynamics

Authors:
G. Everest, R. Miles, S. Stevens and T. Ward

Journal:
Trans. Amer. Math. Soc. **362** (2010), 199-227

MSC (2000):
Primary 37C30; Secondary 26E30, 12J25

Published electronically:
July 30, 2009

MathSciNet review:
2550149

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a class of group endomorphisms - those of finite combinatorial rank - exhibiting slow orbit growth. An associated Dirichlet series is used to obtain an exact orbit counting formula, and in the connected case this series is shown to to be a rational function of exponential variables. Analytic properties of the Dirichlet series are related to orbit-growth asymptotics: depending on the location of the abscissa of convergence and the degree of the pole there, various orbit-growth asymptotics are found, all of which are polynomially bounded.

**1.**Shmuel Agmon,*Complex variable Tauberians*, Trans. Amer. Math. Soc.**74**(1953), 444–481. MR**0054079**, 10.1090/S0002-9947-1953-0054079-5**2.**V. Chothi, G. Everest, and T. Ward,*𝑆-integer dynamical systems: periodic points*, J. Reine Angew. Math.**489**(1997), 99–132. MR**1461206****3.**G. Everest, R. Miles, S. Stevens, and T. Ward,*Orbit-counting in non-hyperbolic dynamical systems*, J. Reine Angew. Math.**608**(2007), 155–182. MR**2339472**, 10.1515/CRELLE.2007.056**4.**G. Everest, V. Stangoe, and T. Ward,*Orbit counting with an isometric direction*, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 293–302. MR**2180241**, 10.1090/conm/385/07202**5.**G. H. Hardy and M. Riesz,*The general theory of Dirichlet’s series*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, Stechert-Hafner, Inc., New York, 1964. MR**0185094****6.**Edmund Hlawka,*Discrepancy and uniform distribution of sequences*, Compositio Math.**16**(1964), 83–91 (1964). MR**0174544****7.**D. A. Lind and T. Ward,*Automorphisms of solenoids and 𝑝-adic entropy*, Ergodic Theory Dynam. Systems**8**(1988), no. 3, 411–419. MR**961739**, 10.1017/S0143385700004545**8.**Richard Miles,*Zeta functions for elements of entropy rank-one actions*, Ergodic Theory Dynam. Systems**27**(2007), no. 2, 567–582. MR**2308145**, 10.1017/S0143385706000794**9.**Richard Miles,*Periodic points of endomorphisms on solenoids and related groups*, Bull. Lond. Math. Soc.**40**(2008), no. 4, 696–704. MR**2441142**, 10.1112/blms/bdn052**10.**John C. Oxtoby,*Ergodic sets*, Bull. Amer. Math. Soc.**58**(1952), 116–136. MR**0047262**, 10.1090/S0002-9904-1952-09580-X**11.**William Parry,*An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions*, Israel J. Math.**45**(1983), no. 1, 41–52. MR**710244**, 10.1007/BF02760669**12.**William Parry and Mark Pollicott,*An analogue of the prime number theorem for closed orbits of Axiom A flows*, Ann. of Math. (2)**118**(1983), no. 3, 573–591. MR**727704**, 10.2307/2006982**13.**William Parry and Mark Pollicott,*Zeta functions and the periodic orbit structure of hyperbolic dynamics*, Astérisque**187-188**(1990), 268 (English, with French summary). MR**1085356****14.**David Ruelle,*Dynamical zeta functions and transfer operators*, Notices Amer. Math. Soc.**49**(2002), no. 8, 887–895. MR**1920859****15.**V. Stangoe,*Orbit counting far from hyperbolicity*, Ph.D. thesis, University of East Anglia, 2004.**16.**Richard P. Stanley,*Enumerative combinatorics. Vol. 1*, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR**1442260****17.**Simon Waddington,*The prime orbit theorem for quasihyperbolic toral automorphisms*, Monatsh. Math.**112**(1991), no. 3, 235–248. MR**1139101**, 10.1007/BF01297343**18.**T. B. Ward,*Almost all 𝑆-integer dynamical systems have many periodic points*, Ergodic Theory Dynam. Systems**18**(1998), no. 2, 471–486. MR**1619569**, 10.1017/S0143385798113378**19.**T. Ward,*Dynamical zeta functions for typical extensions of full shifts*, Finite Fields Appl.**5**(1999), no. 3, 232–239. MR**1702897**, 10.1006/ffta.1999.0250**20.**Hermann Weyl,*Über die Gleichverteilung von Zahlen mod. Eins*, Math. Ann.**77**(1916), no. 3, 313–352 (German). MR**1511862**, 10.1007/BF01475864

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37C30,
26E30,
12J25

Retrieve articles in all journals with MSC (2000): 37C30, 26E30, 12J25

Additional Information

**G. Everest**

Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Email:
g.everest@uea.ac.uk

**R. Miles**

Affiliation:
Department of Mathematics, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Email:
ricmiles@kth.se

**S. Stevens**

Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Email:
shaun.stevens@uea.ac.uk

**T. Ward**

Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Email:
t.ward@uea.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-09-04962-9

Received by editor(s):
July 25, 2007

Published electronically:
July 30, 2009

Additional Notes:
This research was supported by E.P.S.R.C. grant EP/C015754/1.

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.