Modular actions and amenable representations

Authors:
Inessa Epstein and Todor Tsankov

Journal:
Trans. Amer. Math. Soc. **362** (2010), 603-621

MSC (2000):
Primary 37A20; Secondary 22D10

DOI:
https://doi.org/10.1090/S0002-9947-09-04525-5

Published electronically:
September 14, 2009

MathSciNet review:
2551499

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a measure-preserving action of a countable group and a measurable cocycle with countable image, where is a standard Lebesgue space and is any probability space. We prove that if the Koopman representation associated to the action is non-amenable, then there does not exist a countable-to-one Borel homomorphism from the orbit equivalence relation of the skew product action to the orbit equivalence relation of any modular action (i.e., an inverse limit of actions on countable sets or, equivalently, an action on the boundary of a countably-splitting tree), generalizing previous results of Hjorth and Kechris. As an application, for certain groups, we connect antimodularity to mixing conditions. We also show that any countable, non-amenable, residually finite group induces at least three mutually orbit inequivalent free, measure-preserving, ergodic actions as well as two non-Borel bireducible ones.

**[1]**Bachir Bekka, Pierre de la Harpe, and Alain Valette,*Kazhdan's property , available at*.`http://www.mmas.univ-metz.fr/~bekka/`**[2]**Mohammed E. B. Bekka and Alain Valette,*Kazhdan's property and amenable representations*, Math. Z.**212**(1993), no. 2, 293-299. MR**1202813 (94a:22006)****[3]**Mohammed E. B. Bekka,*Amenable unitary representations of locally compact groups*, Invent. Math.**100**(1990), no. 2, 383-401. MR**1047140 (91g:22007)****[4]**Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette,*Groups with the Haagerup property*, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001. MR**1852148 (2002h:22007)****[5]**Alain Connes and Benjamin Weiss,*Property and asymptotically invariant sequences*, Israel J. Math.**37**(1980), no. 3, 209-210. MR**599455 (82e:28023b)****[6]**H. A. Dye,*On the ergodic mixing theorem*, Trans. Amer. Math. Soc.**118**(1965), 123-130. MR**0174705 (30:4905)****[7]**Jacob Feldman and Calvin C. Moore,*Ergodic equivalence relations, cohomology, and von Neumann algebras. I*, Trans. Amer. Math. Soc.**234**(1977), no. 2, 289-324. MR**0578656 (58:28261a)****[8]**Gerald B. Folland,*A course in abstract harmonic analysis*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR**1397028 (98c:43001)****[9]**Damien Gaboriau and Sorin Popa,*An uncountable family of nonorbit equivalent actions of*, J. Amer. Math. Soc.**18**(2005), no. 3, 547-559 (electronic). MR**2138136****[10]**Damien Gaboriau,*On orbit equivalence of measure preserving actions*, Rigidity in dynamics and geometry (Cambridge, 2000), 2002, pp. 167-186. MR**1919400 (2003c:22027)****[11]**Eli Glasner,*Ergodic theory via joinings*, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR**1958753 (2004c:37011)****[12]**Greg Hjorth and Alexander S. Kechris,*Rigidity theorems for actions of product groups and countable Borel equivalence relations*, Mem. Amer. Math. Soc.**177**(2005), no. 833, viii+109. MR**2155451 (2006f:03078)****[13]**Greg Hjorth,*A converse to Dye's theorem*, Trans. Amer. Math. Soc.**357**(2005), no. 8, 3083-3103 (electronic). MR**2135736 (2005m:03093)****[14]**Adrian Ioana,*Orbit inequivalent actions for groups containing a copy of*(2007, preprint), available at`arXiv:math.GR/0701027`.**[15]**S. Jackson, A. S. Kechris, and A. Louveau,*Countable Borel equivalence relations*, J. Math. Log.**2**(2002), no. 1, 1-80. MR**1900547 (2003f:03066)****[16]**Vaughan F. R. Jones and Klaus Schmidt,*Asymptotically invariant sequences and approximate finiteness*, Amer. J. Math.**109**(1987), no. 1, 91-114. MR**878200 (88h:28021)****[17]**Alexander S. Kechris and Benjamin D. Miller,*Topics in orbit equivalence*, Lecture Notes in Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004. MR**2095154 (2005f:37010)****[18]**Alexander S. Kechris and Todor Tsankov,*Amenable actions and almost invariant sets*, Proc. Amer. Math. Soc.**136**(2008), no. 2, 687-697. MR**2358510 (2009a:28035)****[19]**Alexander S. Kechris,*New directions in descriptive set theory*, Bull. Symbolic Logic**5**(1999), no. 2, 161-174. MR**1791302 (2001h:03090)****[20]**Alexander S. Kechris,*Global aspects of ergodic group actions and equivalence relations*(2005 preprint).**[21]**Alexander S. Kechris,*Unitary representations and modular actions*, J. Math. Sci. (New York)**140**(2007), no. 3, 398-425.**[22]**Klaus Schmidt,*Asymptotically invariant sequences and an action of on the -sphere*, Israel J. Math.**37**(1980), no. 3, 193-208. MR**599454 (82e:28023a)****[23]**Yehuda Shalom,*Measurable group theory*, European Congress of Mathematics, 2005, pp. 391-423. MR**2185757 (2006k:37007)****[24]**Simon Thomas,*Popa superrigidity and countable Borel equivalence relations*(2006, preprint).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37A20,
22D10

Retrieve articles in all journals with MSC (2000): 37A20, 22D10

Additional Information

**Inessa Epstein**

Affiliation:
Department of Mathematics, University of California, Mathematical Sciences Building 6363, Los Angeles, California 90095

Email:
iepstein@math.ucla.edu

**Todor Tsankov**

Affiliation:
Department of Mathematics 253-37, California Institute of Technology, Pasadena, California 91125

Email:
todor@caltech.edu

DOI:
https://doi.org/10.1090/S0002-9947-09-04525-5

Keywords:
Modular actions,
amenable representations,
orbit equivalence,
Borel reducibility

Received by editor(s):
March 22, 2007

Received by editor(s) in revised form:
April 12, 2007

Published electronically:
September 14, 2009

Additional Notes:
The first author’s research was partially supported by NSF grant 443948-HJ-21632.

The second author’s research was partially supported by NSF grant and DMS-0455285.

Article copyright:
© Copyright 2009
American Mathematical Society