Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Addition theorems via continued fractions

Authors: Mourad E. H. Ismail and Jiang Zeng
Journal: Trans. Amer. Math. Soc. 362 (2010), 957-983
MSC (2000): Primary 33D15, 33C15; Secondary 30E05, 05A15
Published electronically: September 10, 2009
MathSciNet review: 2551512
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show connections between a special type of addition formulas and a theorem of Stieltjes and Rogers. We use different techniques to derive the desirable addition formulas. We apply our approach to derive special addition theorems for Bessel functions and confluent hypergeometric functions. We also derive several addition theorems for basic hypergeometric functions. Applications to the evaluation of Hankel determinants are also given.

References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • 2. R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54, Number 319 (1985), 55 pages. MR 783216 (87a:05023)
  • 3. G. E. Andrews and J. Wimp, Some $ q$-orthogonal polynomials and related Hankel determinants, Rocky Mountain J. Math., 32(2002), Number 2, 429-442. MR 1934898 (2003i:33020)
  • 4. J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions, II, Quarterly J. Math. 12 (1941), 112-128. MR 0005208 (3:118b)
  • 5. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • 6. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, volume 1, McGraw-Hill, New York, 1953. MR 0058756 (15:419i)
  • 7. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, volume 2, McGraw-Hill, New York, 1953. MR 0058756 (15:419i)
  • 8. J. L. Fields and M. E. H. Ismail, Polynomial expansions, Math. Comp. 29 (1975), 894-902. MR 0372472 (51:8680)
  • 9. J. L. Fields and J. Wimp, Expansions of hypergeometric functions in hypergeometric functions, Math. Comp. 15 (1961), 390-395. MR 0125992 (23:A3289)
  • 10. Ph. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980), 125-161. MR 592851 (82f:05002a)
  • 11. A. R. Forsyth, Theory of Functions of a Complex Variable, 3rd edition, volumes 1 and 2, Cambridge University Press, 1918, reprinted by Dover Publications, New York, 1965. MR 0178116 (31:2374)
  • 12. G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition Cambridge University Press, Cambridge, 2004. MR 2128719 (2006d:33028)
  • 13. Q. H. Hou, A. Lascoux and Y. P. Mu, Continued fractions for Rogers-Szegő polynomials, Numerical Algorithms 35(2004), 81-90. MR 2041804 (2005d:33026)
  • 14. M. E. H. Ismail, Determinants with orthogonal polynomial entries, J. Comput. Appl. Math. 178 (2005), 255-266. MR 2127884 (2006h:33007)
  • 15. M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in one Variable, Cambridge University Press, Cambridge, 2005. MR 2191786 (2007f:33001)
  • 16. M. E. H. Ismail and D. Stanton, More orthogonal polynomials as moments, B. Sagan, & R. Stanley (Eds.), in ``Mathematical Essays in Honor of Gian-Carlo Rota'', Birkhäuser, Basel, 1998, pp. 377-396. MR 1627382 (99f:33011)
  • 17. F. H. Jackson, Basic double hypergeometric functions (II), Quart. J. Math., Oxford Ser. 15 (1944), pp. 49-61. MR 0011348 (6:152e)
  • 18. R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $ q$-analogues, Reports of the Faculty of Technical Mathematics and Informatics no. 98-17, Delft University of Technology, Delft, 1998.
  • 19. T.H. Koornwinder, The addition formula for Laguerre polynomials, SIAM J. Math. Anal. 8 (1977), 535-540. MR 0454106 (56:12357)
  • 20. Ch. Krattenthaler, Advanced determinant calculus, Séminaire Lotharingien Combin. 42 (``The Andrews Festschrift'') (1999), Article B42q, 67 pp. MR 1701596 (2002i:05013)
  • 21. Ch. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra Appl. 411 (2005), 68-166. MR 2178686 (2006g:05022)
  • 22. C. Radoux, Addition formulas for polynomials built on classical combinatorial sequences, J. Computational and Appl. Math. 115 (2000), 471-477. MR 1747239 (2000m:05010)
  • 23. H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, Princeton, NJ, 1948. MR 0025596 (10:32d)
  • 24. A. Verma, Some transformations of series with arbitrary terms, Ist. Lombardo Accad. Sci. Lett. Rend. A 106 (1972), 342-353. MR 0328144 (48:6486)
  • 25. X. G. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux, Lecture Notes, 1983, Université du Québec à Montréal, Montreal.
  • 26. G. N. Watson, A Treatise on the Theory of Bessel Functions, second edition, Cambridge University Press, Cambridge, 1944. MR 0010746 (6:64a)
  • 27. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, Cambridge University Press, Cambridge, 1927. MR 1424469 (97k:01072)
  • 28. J. Wimp, Hankel determinants of some polynomials arising in combinatorial analysis, Numerical Algorithms, 24 (2000), 179-193. MR 1784998 (2001g:15009)
  • 29. J. Zeng, Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials, Proc. London Math. Soc., t. 65, 1992, 1-22. MR 1162485 (93c:05003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 33D15, 33C15, 30E05, 05A15

Retrieve articles in all journals with MSC (2000): 33D15, 33C15, 30E05, 05A15

Additional Information

Mourad E. H. Ismail
Affiliation: Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Jiang Zeng
Affiliation: Université de Lyon, Université Lyon 1, Institute Camille Jordan, UMR 5028 du CNRS, 69622 Villeurbanne, France

Keywords: Addition theorems, orthogonal polynomials, continued $J$-fractions, $q$-orthogonal polynomials, Askey-Wilson polynomials, Bessel and confluent hypergeometric functions
Received by editor(s): August 3, 2007
Received by editor(s) in revised form: May 5, 2008
Published electronically: September 10, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society